ON FINITE GROUPS ADMITTING A SPECIAL NONCOPRIME ACTION

GÜLín ERCAN

(Communicated by Jonathan I. Hall)

Abstract

An important result of Turull (1984) is the following: Let $G A$ be a finite solvable group, $G \triangleleft G A$ and $(|G|,|A|)=1$. Then $f(G) \leq f\left(C_{G}(A)\right)+2 \ell(A)$, where f denotes the Fitting height and ℓ denotes the composition length.

The purpose of this work is to give a treatment of the minimal configuration in this framework with additional conditions, yet without the coprimeness condition.

Here we will prove (see Theorem 2) the following:
Let G be a finite solvable group and let α be an automorphism of G of order p for some prime p. Assume that the orders of elements of $H=G\langle\alpha\rangle$ lying outside of G are not divisible by p^{2}. If $C_{\mathcal{S}}(x)$ is nilpotent for any $x \in H-G$ of order p and for any x-invariant section \mathcal{S} of G, then $f(G) \leq 3$. Furthermore, if the nilpotency condition is replaced by abelianness, then $f(G) \leq 2$.

An immediate consequence of this theorem is a particular case of Turull's result (see also 1] and [4):

Let G be a finite solvable group and let α be an automorphism of G of order p for some prime p where $(|G|,|\alpha|)=1$. If $C_{G}(\alpha)$ is nilpotent, then $f(G) \leq 3$. Furthermore if $C_{G}(\alpha)$ is abelian, then $f(G) \leq 2$.

Although our main purpose is the proof of Theorem 2, and Theorem 1 below makes its appearence as an auxiliary, it should be pointed out that Theorem 1 is of independent interest, too. Theorem 1 is, in its turn, a generalization of the following Lemma.

Lemma ([3, Lemma 1]). Let $G=S T$ be a group where $S \triangleleft G, S$ is a p-group and T is a t-group for distinct primes p and t, and let α be an automorphism of G of order p^{n} which leaves T invariant. Assume that $C_{T / T_{0}}(z)=1$, where $T_{0}=C_{T}(S)$ and $z=\alpha^{p^{n-1}}$. Let V be a $k G\langle\alpha\rangle$-module on which S acts faithfully and k is a field of characteristic different from p. If $\left[C_{V}(z), C_{S}(z)\right]=1$, then $[S, T]=1$.

Theorem 1. Let $\langle\alpha\rangle$ be a cyclic group of order p^{n} for some prime p, and let G be a group acted on by $\langle\alpha\rangle$. Suppose that $S \triangleleft G\langle\alpha\rangle$ is an s-group and T is an $\langle\alpha\rangle$-invariant t-subgroup of G for distinct primes s and t, such that $[S, T] \neq 1$. Let V be a $k G\langle\alpha\rangle$-module on which S acts faithfully, where k is a field of characteristic

[^0]not dividing s. Let $z=\alpha^{p^{n-1}}$. Then either $\left[C_{V}(z), C_{S}(z)\right] \neq 1$
or $\quad\left[C_{V}(z), C_{T}(z)\right] \neq 1$
or $\quad\left[C_{S}(x), C_{T / T_{0}}(x)\right] \neq 1$ for some $\bar{x} \in\left(T / T_{0}\right)\langle\alpha\rangle-\left(T / T_{0}\right)$ of order p, where $T_{0}=C_{T}(S)$.

Proof. Set $H=G\langle\alpha\rangle$ and use induction on $|H|+\operatorname{dim}_{k} V$. We may assume that $n=1$ and $G=S T$.
(1) $\Phi\left(T / T_{0}\right)=1$ and $\langle\alpha\rangle$ acts irreducibly on T / T_{0}.

This is an immediate consequence of induction argument applied to $S T_{1}\langle\alpha\rangle$ on V for a minimal $\langle\alpha\rangle$-invariant subgroup T_{1} / T_{0} of T / T_{0}.
(2) $t \neq p$.

Assume the contrary. Then T / T_{0} is centralized by any $1 \neq \bar{x} \in\left(T / T_{0}\right)\langle\alpha\rangle-$ $\left(T / T_{0}\right)$. Let U be an irreducible $T\langle\alpha\rangle$-submodule of $S / \Phi(S)$ on which T acts nontrivially, and let $\bar{t} \in T / T_{0}$ such that $[U, \bar{t}] \neq 1$. Then $C_{U}(\bar{t})=1$. This yields a contradiction as $U=\left\langle C_{U}(a) \mid 1 \neq a \in\langle\bar{t}, \alpha\rangle\right\rangle$ by ([6, 5.3.16]) and $\left[C_{U}(\bar{x}), T / T_{0}\right]=1$ for any $1 \neq \bar{x} \in\langle\bar{t}, \alpha\rangle-\langle\bar{t}\rangle$.
(3) $S / \Phi(S)$ is an irreducible $T\langle\alpha\rangle$-module with $[S, T]=S$, $[\Phi(S), T]=1$ and S is special.

Let S_{1} be a normal subgroup of H properly contained in S on which T acts nontrivially. Put $T_{1}=C_{T}\left(S_{1}\right)$. By induction, there exists $\bar{x} \in\left(T / T_{1}\right)\langle\alpha\rangle-\left(T / T_{1}\right)$ such that $\left[C_{S_{1}}(x), C_{T / T_{1}}(x)\right] \neq 1$. As $t \neq p$, this yields that $\left[C_{S_{1}}(x), C_{T / T_{0}}(x)\right] \neq 1$ which is not the case. Thus $T\langle\alpha\rangle$ acts irreducibly on $S / \Phi(S),[S, T]=S,[\Phi(S), T]=$ 1 and S is special.
(4) $[T, \alpha]=1$.

Assume the contrary. Then $C_{T / T_{0}}(\alpha)=1$ and so $C_{S / \Phi(S)}(\alpha) \neq 1$. Now $s \neq p$, because otherwise $\left[C_{V}(\alpha), C_{S}(\alpha)\right] \neq 1$ by the Lemma.

Let M be an irreducible $S T\langle\alpha\rangle$-submodule of V on which S acts nontrivially. Then $[M, S]=M$ and so $[M, T] \neq 1$. Set $\bar{S}=S / C_{S}(M)$. By Clifford's theorem aplied to $\bar{S} T$ on M, we have that $M=W_{1} \oplus \cdots \oplus W_{r}$, where the W_{i} 's are homogeneous $\bar{S} T$-modules. Here $N_{\langle\alpha\rangle}\left(W_{1}\right)=N_{\langle\alpha\rangle}\left(W_{i}\right)$ for each $i=1, \cdots, r$ and so either $r=1$ or $r=p$. If the latter holds, then $\left[W_{i}, C_{\bar{S}}(\alpha)\right]=1$ for each i, because $\left[C_{M}(\alpha), C_{S}(\alpha)\right]=1$ and $s \neq p$. It follows that $C_{S}(\alpha) \leq C_{S}(M)$ and so $C_{S}(\alpha) \leq \Phi(S)$ which is not the case. Thus M is a homogeneous $\bar{S} T$-module, i.e. $M=M_{1} \oplus \cdots \oplus M_{i}$ with $M_{i} \cong M_{1}$ irreducible $\bar{S} T$-modules.

If \bar{S} is nonabelian, then $[\Phi(\bar{S}), \alpha]=1$ and so $C_{M}(\alpha) \leq C_{M}(\Phi(S))=1$. This shows that char $k \neq p$. Observe that $[\bar{S}, \alpha] \neq 1$, because otherwise $[\bar{S}, T]=1$ by the three subgroup lemma. By [5] applied to the action of both $[\bar{S}, \alpha]\langle\alpha\rangle$ and $T\langle\alpha\rangle$ on M, we conclude that $s=2=t$, which is impossible.

Thus \bar{S} is abelian. The number of homogeneous components of $\left.M_{1}\right|_{S}$ is a power of t and so the number of homogeneous components of $\left.M\right|_{\bar{S}}$ is also a power of t. Since $t \neq p, \alpha$ fixes a homogeneous component W of $\left.M\right|_{\bar{S}}$. If U is a homogeneous component of $\left.M\right|_{\bar{S}}$ which is α-invariant and different from W, then $W=U^{a}$ for some $a \in T\langle\alpha\rangle$. Now $[a, \alpha] \in N_{T}(W)$ and so $1 \neq C_{T / N_{T}(W)}(\alpha) \cong C_{\left(T / T_{0}\right) /\left(N_{T}(W) / T_{0}\right)}(\alpha)$, i.e. $C_{T / T_{0}}(\alpha) \neq 1$, which is not the case. Thus α fixes exactly one homogeneous component W of $\left.M\right|_{\bar{S}}$. Observe that either $N_{T}(W)=T$ or $N_{T}(W) \leq T_{0}$. If the first holds, then $[[\bar{S}, T], W]=[\bar{S}, W]=1$ implying that $C_{M}(\bar{S}) \neq 1$, which is not the case. Hence $N_{T}(W) \leq T_{0}$. Also note that $[\bar{S}, \alpha] \neq 1$, because otherwise $[\bar{S}, T]=1$ by the three subgroup lemma. Now $[[\bar{S}, \alpha], W]=1$, and so there exists
a homogeneous component U of $\left.M\right|_{\bar{S}}$ such that $U \neq U^{\alpha}$. Here note that

$$
C_{\bar{S}}(\alpha) \leq \operatorname{Ker}(\bar{S} \text { on } U)
$$

as $\left[C_{U}(\alpha), C_{S}(\alpha)\right]=1$, and so

$$
C_{\bar{S}}(\alpha) \cap \operatorname{Ker}(\bar{S} \text { on } W) \leq \operatorname{Ker}(\bar{S} \text { on } M)=1
$$

Then $C_{\bar{S}}(\alpha) \cap\left\langle C_{\bar{S}}(\alpha)^{\bar{t}} \mid 1 \neq \bar{t} \in \bar{T}\right\rangle=1$, where $\bar{T}=T / C_{T}(M)$ and so $C_{\bar{S}}(\alpha)^{\bar{x}} \cap$ $\left\langle C_{\bar{S}}(\alpha)^{\bar{t}} \mid \quad \bar{x} \neq \bar{t}\right\rangle=1$. Now $\sum_{\bar{t} \in \bar{T}} C_{\bar{S}}(\alpha)^{\bar{t}}=\bigoplus_{\bar{t} \in \bar{T}} C_{\bar{S}}(\alpha)^{\bar{t}}=\bar{S}$ since \bar{S} is an irreducible $T\langle\alpha\rangle$-module. It follows that $|\bar{S}|=\left|C_{\bar{S}}(\alpha)\right|^{|\bar{T}|}$. On the other hand $\left[\bar{S},\left[\bar{T} / \bar{T}_{0}, \alpha\right]\right]=\bar{S}$ and so $|\bar{S}|=\left|C_{\bar{S}}(\alpha)\right|^{p}$ by Lemma 4.5 in [7]. As $t \neq p$, we get a contradiction. Therefore $\left[T / T_{0}, \alpha\right]=1$, i.e. $C_{T}(\alpha) T_{0}=T$. By induction we see that $C_{T}(\alpha)=T$.
(5) $[S, \alpha]=S$ and so $s \neq p$.
$[S, \alpha]$ is either trivial or the whole of S. If it is trivial, then $[S, T]=1$ as $\left[C_{S}(\alpha), C_{T / T_{0}}(\alpha)\right]=1$, a contradiction.
(6) S is abelian.

Assume the contrary. Then $1 \neq \Phi(S)=Z(S)$. Let M be an irreducible $S T\langle\alpha\rangle$ submodule of V on which $\Phi(S)$ acts nontrivially. Set $\bar{S}=S / C_{S}(M)$. We consider $\left.M\right|_{\bar{S} T}=W_{1} \oplus \cdots \oplus W_{r}$, where W_{i} 's are homogeneous $\bar{S} T$-components of M. If $r=p$, then $\left[W_{i}, T\right]=1$ for each i, as $\left[C_{M}(\alpha), T\right]=1$, and so $[M, T]=1$, which is not the case. Then $r=1$. It follows that $[\Phi(\bar{S}), \alpha]=1$ implying that $C_{M}(\alpha) \leq$ $C_{M}(\Phi(\bar{S}))=1$. If $\Phi(\bar{S})$ is not cyclic, then there exists $1 \neq a \in \Phi(\bar{S})$ such that $C_{M}(a) \neq 1$, by ($\left.6,5.3 .16\right]$), implying that $C_{\bar{S}}(M) \neq 1$, a contradiction. Hence $\Phi(\bar{S})$ is cyclic and so \bar{S} is estraspecial, where $|\bar{S}|=2^{2 n+1}$ and $p=2^{n}+1$ for some $n \geq 1$, by [5].

By [6, 5.5.2], the number of distinct cyclic subgroups of order 4 in \bar{S} is

$$
\frac{1}{2}\left(2^{2 n} \mp(-2)^{n}\right)
$$

Since each cyclic group of order 4 contains two elements of order 4, and distinct cyclic subgroups of order 4 have no element of order 4 in common, there are $2^{2 n} \mp$ $(-2)^{n}=2^{n}\left(2^{n} \mp 1\right)$ elements of order 4 in \bar{S}. As $T\langle\alpha\rangle$ acts irreducibly on $\bar{S} / \Phi(\bar{S})$ and $[\bar{S}, T]=\bar{S}$, we have $C_{\bar{S}}(T) \leq \Phi(\bar{S})$. It follows that $C_{\bar{S}}(T)=\Phi(\bar{S})$, since $[\Phi(\bar{S}), T]=1$. Now $\Phi(\bar{S})$ contains no element of order 4 , since it is cyclic of order 2. Thus $T\langle\alpha\rangle$ permutes the elements of \bar{S} of order 4 , without fixing any, in orbit of length $|(T\langle\alpha\rangle) /(\Phi(T))|=t p$. Therefore $t p$ divides $2^{n}\left(2^{n} \pm 1\right)$. But as $t \neq s=2$ and $p=2^{n}+1, t p$ divides $2^{n}+1=p$ which yields that $t=1$, a contradiction.
(7) Finally, let M be an irreducible $S T\langle\alpha\rangle$-submodule of V on which S acts nontrivially. Set $\bar{S}=S / C_{S}(M)$. Let $\Omega=\left\{W_{1}, \cdots, W_{r}\right\}$ be the set of all homogeneous \bar{S}-components of M. Since $[S, \alpha]=S$, no W_{i} is α-invariant. Because otherwise as $\left[S, W_{i}\right]=1$ for each i, we have $C_{M}(S) \neq 1$, a contradiction.

Let $\mathcal{O}=\left\{W, W^{\alpha}, \cdots, W^{\alpha^{p-1}}\right\}$ be an α-orbit. Set $\bar{T}=T / C_{T}(M)$ and $X=$ $\bigoplus_{i=0}^{p-1} W^{\alpha^{i}}$. As $\left[C_{X}(\alpha), T\langle\alpha\rangle\right]=1$, we have $\left[W, N_{T\langle\alpha\rangle}(W)\right]=1$. Let $t \in T$. If $Y=X^{t}$, then $C_{Y}(\alpha)=C_{X}(\alpha)^{t}=C_{X}(\alpha)$ and so $X \cap Y \neq 0$, i.e. $X=Y$. Hence T acts on \mathcal{O} and $\mathcal{O}=\Omega$. This gives that $p=|\Omega|=\left|T\langle\alpha\rangle: N_{T\langle\alpha\rangle}(W)\right|$. Then $N_{T\langle\alpha\rangle}(W)=T$ because T is the unique subgroup of $T\langle\alpha\rangle$ of index p. This yields that $[W, T]=1$ and so $[M, T]=1$, a contradiction which completes the proof of Theorem 1.

As a consequence of Theorem 1, we have
Theorem 2. Let G be a finite solvable group and let α be an automorphism of G of order p for some prime p. Assume that the orders of elements of $H=G\langle\alpha\rangle$ lying outside G are not divisible by p^{2}. If $C_{\mathcal{S}}(x)$ is nilpotent for any $x \in H-G$ of order p and for any x-invariant section \mathcal{S} of G, then $f(G)$ is at most 3 . Furthermore, if the nilpotency condition is replaced by abelianness, then $f(G) \leq 2$.

Proof. Let $H=G\langle\alpha\rangle$ be a minimal counterexample to the theorem. We may assume that $f(G)=4$. Then by Lemma 1 in [2] there exist subgroups C_{i} of G and subgroups $D_{i} \triangleleft C_{i}$ for $i=1,2,3,4$ and an element $x \in H-G$ of order p such that the following are satisfied:
(i) C_{i} is a p_{i}-subgroup for some prime p_{i}, i.e. $\pi\left(C_{i}\right)=\left\{p_{i}\right\}$ for any i and $p_{i} \neq p_{i+1}$ for $i=1,2,3$.
(ii) C_{i} and D_{i} are $\left(\prod_{j>i} C_{j}\right)\langle\alpha\rangle$-invariant for any i.
(iii) $\bar{C}_{i}=C_{i} / D_{i}$ is a special group on the Frattini factor group of which $\left(\prod_{j>i} C_{j}\right)\langle\alpha\rangle$ acts irreducibly and C_{i+1} acts trivially on $\Phi\left(\bar{C}_{i}\right)$ for any i.
(iv) $\left[C_{i}, C_{i+1}\right]=C_{i}$ for $i=1,2,3$.
(v) $C_{C_{i+1}}\left(\bar{C}_{i} / \Phi\left(\bar{C}_{i}\right)\right)=C_{C_{i+1}}\left(\bar{C}_{i}\right)$ is contained in $\Phi\left(C_{i+1} \bmod D_{i+1}\right)$ for $i=$ 1, 2, 3 .
(vi) $\left[C_{j}, C_{i}\right]$ is not contained in $\Phi\left(C_{j} \bmod D_{j}\right)$ for any $i=2,3,4$ and any $1 \leq$ $j<i$.

Put $K=C_{1} C_{2} C_{3} C_{4}$. Now $K\langle x\rangle$ satisfies the hypothesis of the theorem.
Applying Theorem 1 to the action of $\bar{C}_{3} C_{4}\langle x\rangle$ on the Frattini factor group \tilde{C}_{2} of \bar{C}_{2} we see that $\left[C_{\tilde{C}_{2}}(x), C_{C_{4}}(x)\right] \neq 1$ with the requirement $\pi\left(C_{2}\right)=\pi\left(C_{4}\right)$. Also applying Theorem 1 to the action of $\bar{C}_{2} C_{3}\langle x\rangle$ on C_{1} we see that $\left[C_{C_{1}}(x), C_{C_{3}}(x)\right] \neq 1$ with the requirement $\pi\left(C_{1}\right)=\pi\left(C_{3}\right)$. Now $D_{4}=C_{C_{4}}\left(\bar{C}_{2}\right)$ and so $C_{C_{4}}(x) \not 又 D_{4}$, i.e. $\left[\bar{C}_{4}, x\right]=1$ This forces that $C_{\bar{C}_{3}}(x) \leq \Phi\left(\bar{C}_{3}\right)$, because otherwise $\left[\bar{C}_{3} \bar{C}_{4}, x\right]=1$, which is not the case. Then $C_{\bar{C}_{3}}(x) \leq Z\left(\bar{C}_{3} C_{4}\langle x\rangle\right)$ and so $C_{\tilde{C}_{2}}\left(C_{\bar{C}_{3}}(x)\right)$ is either trivial or \tilde{C}_{2}. If it is trivial, then $C_{\tilde{C}_{2}}(x)=1$, which is not the case. Hence $C_{\bar{C}_{3}}(x)=1$, i.e. $C_{C_{3}}(x) \leq D_{3}=C_{C_{3}}\left(C_{1}\right)$ as $\pi\left(C_{1}\right)=\pi\left(C_{3}\right)$, a contradiction. This completes the proof of the first claim.

The last claim can be easily shown by an application of Theorem 1 to $C_{1} C_{2} C_{3}\langle x\rangle$, where C_{i} are subgroups of H and $D_{i} \triangleleft C_{i}, i=1,2,3$, satisfying (i)-(vi).

Corollary. Let G be a finite solvable group and let α be an automorphism of G of order p for some prime p where $(|G|,|\alpha|)=1$. If $C_{G}(\alpha)$ is nilpotent, then $f(G) \leq 3$. Furthermore if $C_{G}(\alpha)$ is abelian, then $f(G) \leq 2$.

References

1. Asar, A.O.: Automorphism of prime order of soluble groups whose subgroups of fixed points are nilpotent. Journal of Algebra 88, 178-189 (1984). MR0741938 (85k:20069)
2. Ercan G., Güloğlu, İ.: On the Fitting length of $H_{n}(G)$. Rend. Sem. Mat. Univ. Padova, 89 (1993). MR 1229051 (94f:20035)
3. Ercan, G, Güloğlu, I.: On finite groups admitting a fixed point free automorphism of order $p q r$, J. Group Theory 7 (2004), no. 4, 437-446. MR2080444
4. Feldman, A.: Fitting height of soluble groups admitting an automorphism of prime order with abelian fixed point subgroup, Journal of Algebra 68, 97-108 (1981). MR0604296 (83b:20021)
5. Gagola, S., Jr.: Solvable groups admitting an almost fixed point free automorphism of prime order. Illinois J. Math. 22, 191-207 (1978). MR0473007 (57:12686)
6. Gorenstein, D.: Finite Groups, New York (1968). MR0231903 (38:229)
7. Hartley, B., Turau, V.: Finite solvable groups admitting an automorphism of prime power order with few fixed points. Math. Proc. Camb. Phil. Soc., 431-441 (1987). MR0906617 (88i:20041)
8. Turull, A.: Fitting height of groups and of fixed points. Journal of Algebra 86, 555-566 (1984). MR0732266 (85i:20021)

Department of Mathematics, Middle East Technical University, 06531, Ankara, Turkey

[^0]: Received by the editors May 17, 2004.
 2000 Mathematics Subject Classification. Primary 20D10, 20F28.
 Key words and phrases. Noncoprime action, fitting height.

