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Abstract. A finite group FH is said to be Frobenius-like if it has a nontrivial
nilpotent normal subgroup F with a nontrivial complement H such that [F, h] = F
for all nonidentity elements h ∈ H. Suppose that a finite group G admits a
Frobenius-like group of automorphisms FH of coprime order with [F ′, H] = 1. In
case where CG(F ) = 1 we prove that the groups G and CG(H) have the same
nilpotent length under certain additional assumptions.

1. Introduction

A finite group A is defined in [5] to be Frobenius-like with kernel F and com-
plement H, if it has a nontrivial nilpotent normal subgroup F , and a nontrivial
subgroup H with A = FH, F ∩H = 1 and [F, h] = F for all nonidentity elements
h ∈ H. The title of this paper refers to Frobenius-like groups FH in which the
derived subgroup F ′ of F is centralized by H. In this case one sees easily using the
Three Subgroup Lemma that F ′ 6 Z(FH). Extraspecial groups F admitting a group
of automorphisms H which acts semiregularly on F/F ′ and centralizes F ′ provide
examples FH of Frobenius-like groups which contain F ′ in the center. In [2] and
[4] we investigated the structure of solvable groups G which admit a Frobenius-like
group of the above type for which F ′ is of prime order. It is observed in the present
paper that whenever the action of F ′ on the top Fitting factor of G is Frobenius,
that is, (G/Fn−1(G))F ′ is a Frobenius group; the condition that F ′ is of prime order
can be replaced by the weaker condition that F ′ has a maximal subgroup of prime
power order. It should be noted that the group F ′ is cyclic under the assumption
that its action on the top Fitting factor of G is Frobenius. Namely we prove

Theorem Let G be a finite group of odd order of nilpotent length n admitting
a Frobenius-like group of automorphisms FH of odd coprime order with kernel F
and complement H with [F ′, H] = 1 such that CG(F ) = 1. Suppose that F ′ has a
maximal subgroup of prime power order and its action on the group G/Fn−1(G) is
Frobenius, then the nilpotent length of CG(H) is n.

The key result which is crucial in proving this theorem is as follows.

Proposition Let FH be a Frobenius-like group of odd order with [F ′, H] = 1
acting on a q-group Q of class at most 2 for some odd prime q coprime to the order
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of FH. Let V be a kQFH-module on which F acts fixed point freely where k is a
field of characteristic not dividing |QFH|. Assume further that for any nonidentity
x ∈ F ′ and for any irreducible Q-submodule U of V , [Q, x] acts nontrivially on U .
Then we have

Ker(C[Q,F ](H) onCV (H)) = Ker(C[Q,F ](H) on V ).

Here we use alternative notation for the kernel of an action of a group A by
automorphisms on a group B denoting Ker(AonB) := CA(B) in order to avoid
cumbersome subscripts.

Remark It is well known that in the study of Hall-Higman type theorems some
exceptional cases do really occur due to the existence of Fermat or/and Mersenne
primes and nonabelian Sylow 2-subgroups. Although we have been able to prove
the above theorems without assuming that the relevant groups are of odd order, but
under conditions which help to avoid the exceptional situations, we have stated them
only for groups of odd order, in order to make the arguments as clear as possible.
Otherwise the hypotheses of the theorems would be so complicated that one would
have difficulties in appreciating the main idea. More precisely, in views of [3] and
[6], our result could actually be reformulated as Theorem* below using the following
hypothesis (*):

(*) Sylow 2-subgroups of H are cyclic and normal, F has no extraspecial sections
of order p2m+1 where pm + 1 = |H1| for some subgroup H1 6 H, and |G| is not
divisible by any prime q such that qf + 1 divides exp(F ′) for some positive integer
f .

Theorem* Let G be a finite group of nilpotent length n admitting a Frobenius-
like group of automorphisms FH of coprime order with kernel F and complement
H such that CG(F ) = 1. Suppose that [F ′, H] = 1, F ′ has a maximal subgroup of
prime power order and its action on the group G/Fn−1(G) is Frobenius. If (*) holds
then the nilpotent length of CG(H) is n.

2. proof of the proposition

The following lemma will be used in the proof of the proposition.

Lemma 2.1. Let FH be a Frobenius-like group with [F ′, H] = 1. For any subgroup S
of F which is normalized but not centralized by H, the group [S,H]H is a Frobenius-
like group with kernel [S,H].

Proof. Set R = [S,H] and R̂ = R/Φ(R). Pick a nonidentity element h ∈ H. Clearly,

we have [R̂, h] = [̂R, h]. If [R̂, h] 6= R̂ then CR(h) = R ∩ CF (h) = R ∩ F ′ is not
contained in Φ(R) and is centralized byH. This contradicts the fact that [R,H] = R.
Therefore [R, h] = R for each nonidentity h ∈ H, establishing the claim. �

Now we are ready to present a proof for the proposition.
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Suppose that the proposition is false and choose a counterexample with minimum
dimk V + |QFH|. To ease the notation we set K = Ker(C[Q,F ](H) onCV (H)). We
proceed over several steps.

(1) We may assume that k is a splitting field for all subgroups of QFH.

Proof. We consider the QFH-module V̄ = V ⊗k k̄ where k̄ is the algebraic closure
of k. Notice that dimkV = dimk̄V̄ and CV̄ (H) = CV (H) ⊗k k̄. Therefore once the
proposition has been proven for the group QFH on V̄ , it becomes true for QFH on
V also. �

(2) We have Q = [Q,F ] and hence CQ(F ) 6 Q′ 6 Z(Q).

Proof. If there is a nonidentity x ∈ F ′ such that [[Q,F ], x] acts trivially on an
irreducible [Q,F ]-submodule X of V , then [Q, x, x] = [Q, x] acts trivially on X.
Since [Q, x] E Q, the module XQ = Σy∈QX

y is centralized by [Q, x] and hence there
is an irreducible Q-submodule of V which is centralized by [Q, x]. Therefore the
action of [Q,F ]FH on V satisfies the hypothesis of the proposition. So if [Q,F ] 6= Q,
the proposition holds for the group [Q,F ]FH on V by induction. That is, the
conclusion of the proposition is true as we have [Q,F, F ] = [Q,F ]. This contradiction
shows that [Q,F ] = Q and hence CQ(F ) 6 Q′ 6 Z(Q) as claimed. �

(3) V is an irreducible QFH-module on which Q acts faithfully.

Proof. As char(k) is coprime to the order of Q and K 6= 1, there is a QFH-
composition factor W of V on which K acts nontrivially. If W 6= V , then the
proposition is true for the group QFH on W by induction. That is,

Ker(CQ(H) onCW (H)) = Ker(CQ(H) onW )

and hence
K = Ker(K onCW (H)) = Ker(K onW )

which is a contradiction with the assumption that K acts nontrivially on W. Hence
V = W .

We next set Q = Q/Ker(QonV ) and consider the action of the group QFH on V
assuming Ker(QonV ) 6= 1. An induction argument gives Ker(CQ(H) onCV (H)) =

Ker(CQ(H) on V ). This leads to a contradiction as CQ(H) = CQ(H) due to the
coprime action of H on Q. Thus we may assume that Q acts faithfully on V . �

By Clifford’s theorem the restriction of the QFH-module V to the normal sub-
group Q is a direct sum of Q-homogeneous components.

(4) Let Ω denote the set of Q-homogeneous components of V . Then F acts
transitively on Ω and H fixes an element of Ω.

Proof. Let Ω1 be an F -orbit on Ω and set H1 = StabH(Ω1). Suppose first that
H1 = 1. Pick an element W from Ω1. Clearly, we have StabH(W ) 6 H1 = 1
and hence the sum X =

∑
h∈HW

h is direct. It is straightforward to verify that

CX(H) =
{∑

h∈H v
h : v ∈ W

}
. By definition, K acts trivially on CX(H). Note also

that K normalizes each W h as K 6 Q. It follows now that K is trivial on X. Notice
that the action of H on the set of F -orbits on Ω is transitive, and K 6 CQ(H).
Hence K is trivial on the whole of V , which is a contradiction. Thus H1 6= 1.
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The group H acts transitively on {Ωi : i = 1, 2, . . . , s} , the collection of F -orbits
on Ω. Let now Vi =

⊕
W∈Ωi

W for i = 1, 2, . . . , s. Suppose now that H1 is a proper
subgroup of H, equivalently, s > 1. By induction the proposition holds for the group
QFH1 on V1, that is,

Ker(CQ(H1) onCV1(H1)) = Ker(CQ(H1) on V1).

In particular, we have

Ker(CQ(H) onCV1(H1)) = Ker(CQ(H) on V1).

On the other hand we observe that

CV (H) = {ux1 + ux2 + · · ·+ uxs : u ∈ CV1(H1)}
where x1, . . . , xs is a complete set of right coset representatives of H1 in H. By
definition, K acts trivially on CV (H) and normalizes each Vi. Then K is trivial on
CV1(H1) and hence on V1. As K is normalized by H we see that K is trivial on each
Vi and hence on V , a contradiction. Therefore H1 = H so that Ω = Ω1 and F acts
transitively on Ω as desired.

Let now S = StabFH(W ) and F1 = F ∩ S. Then |F : F1| = |Ω| = |FH : S| and
so |S : F1| = |H|. Notice next that as (|F1|, |H|) = 1 there exists a complement, say
S1, of F1 in S with |H| = |S1| by Schur-Zassenhaus theorem. Therefore by passing,
if necessary, to a conjugate of W in Ω, we may assume that S = F1H, that is, W is
H-invariant. This establishes the claim. �

From now on W will denote an H-invariant element in Ω the existence of which
is established by (4). It should be noted that the group Z(Q/Ker(QonW )) acts
by scalars on the homogeneous Q-module W , and so [Z(Q), H] 6 Ker(QonW ) as
W is stabilized by H. Set L = K ∩ Z(CQ(H)). Since 1 6= K E CQ(H), the group L
is nontrivial.

(5) Set U =
∑

x∈F ′W
x and F2 = StabF (U). Then [L,Q] 6 CQ(U).

Proof. Note that Z2(Q) = Q by the hypothesis andQ = [Q,H]CQ(H) as (|Q| , |H|) =
1. We have [Q,L,H] 6 [Z(Q), H] 6 CQ(W ). We also have [L,H,Q] = 1 as [L,H] =
1. It follows now by the Three Subgroup Lemma that [H,Q,L] 6 CQ(W ). On the
other hand [CQ(H), L] = 1 by the definition of L. Thus [L,Q] 6 CQ(W ). Since the
group [L,Q] is F ′ -invariant as [F ′, H] = 1, we conclude that [L,Q] 6 CQ(U). �

(6) F2 = F1F
′ is a proper subgroup of F , and Kx acts trivially on U for every

x ∈ F − F2. Moreover, CV (H) 6= 0.

Proof. For F2 = StabF (U), clearly we have F ′ 6 F2 and F1 = StabF (W ) 6 F2. This
gives F2 = F1F

′. Assume that F = F2. This forces the equality V = U as F is
transitive on Ω by (4). In fact we have F = F1 = F2 and so V = W = U as F ′ 6
Φ(F ). Then [LF2 , Q] 6 CQ(V ) = 1 by (5) and hence LF2 6 Z(Q). Now Z(Q) and
hence L acts by scalars on the homogeneous Q-module V . Notice that CV (H) 6= 0
by Corollary 3.4 in [4] applied to the action of FH on V. Since L/Ker(LonV ) acts
faithfully and by scalars on V , we get L 6 Ker(LonV ), which is not the case.
Consequently, in any case F 6= F2.

Pick x ∈ F − F2 and suppose that there exists 1 6= h ∈ H such that (Ux)h = Ux

holds. Then [h, x−1] ∈ F2 and so F2x = F2x
h = (F2x)h. The Frobenius action

4



of H on F/F2 gives that x ∈ F2, a contradiction. That is, for each x ∈ F − F2,
StabH(Ux) = 1. In particular, H-orbit of Ux is regular and hence we conclude that
CV (H) 6= 0.

Set now U1 = Ux for some x ∈ F − F2. The sum Y =
∑

h∈H U1
h is di-

rect by the preceding paragraph. It is straightforward to verify that CY (H) ={∑
h∈H v

h : v ∈ U1

}
. By definition, K acts trivially on CY (H). Note also that K

normalizes each U1
h for every h ∈ H as K 6 Q. It follows now that K is trivial on

Y and hence trivial on Ux for every x ∈ F −F2 which is equivalent to that Kx acts
trivially on U for all x ∈ F − F2 as desired. �

(7) L 6 Z(Q) and hence the group LCQ(W )/Ker(QonW ) acts by scalars on W.

Proof. Recall that [L,Q] 6 Ker(QonU) by (5). This gives [LF2 , Q] 6 Ker(QonU).
On the other hand [Lx, Q] 6 [Ker(QonU), Q] 6 Ker(QonU) for any x ∈ F−F2 by
(6). Then we have [LF , Q] 6 Ker(QonU). It follows that [LF , Q] 6 Ker(QonV ) =
1, that is LF 6 Z(Q). �

(8) CU(H) = 0, [U, [F2, H]] = 0, and hence [Q, [F2, H]] 6 Ker(QonU).

Proof. It should be noted that the group [F2, H]H is Frobenius-like by Lemma. If
[U, [F2, H]] 6= 0 then Corollary 3.4 in [4] applied to the action of [F2, H]H on U gives
that CU(H) 6= 0. This forces that CW (H) 6= 0 and hence L acts trivially on W ,
which is a contradiction. Therefore we have CU(H) = 0 and [U, [F2, H]] = 0. As a
consequence, [U, [F2, H], Q] = 0 = [Q,U, [F2, H]]. It follows by the three subgroup
lemma that [Q, [F2, H]] 6 Ker(QonU). �

(9) [F2, H] = [F1, H] and [F1, H] ∩ F ′ = 1.

Proof. By (8), [F1, H] ∩ F ′ 6 Ker(Z(F ) onW ) and hence trivial. �

(10) The theorem follows.

Proof. Notice that CW (F1) = 0 = CU(F2) as CV (F ) = 0. Suppose first that F1 =
F2 = [F1, H]F ′. In case CW (F ′) 6= 0 we apply Corollary 3.4 in [4] to the action
of the Frobenius group (F1/F

′)H on CW (F ′) and see that CW (F ′)H is free. Since
CW (H) = 0 by (8) we get CW (F ′) = 0. Suppose next that F1 6= F2 = F1F

′. In
fact F2 = [F1, H] × F ′. Notice that CU(F2) = 0 = [U, [F1, H]] whence CU(F ′) =
0. As QF ′ C QF2H and U is an irreducible QF2H-module, we can consider the
decomposition of U into its QF ′-homogeneous components. Let Y be one of these
components. Recall that F ′ is cyclic. By Theorem 4.1 in [6] applied to the action of
QF ′ on Y we get x ∈ F ′ such that [Q, x] 6 Ker(QonY ). As [Q, x] is FH-invariant
we have [Q, x] 6 Ker(QonU) and so [Q, x] 6 Ker(QonV ) = 1. This contradiction
completes the proof. �

The following example shows that the faithfulness of F ′ on Q/Ker(QonU) for
any irreducible Q-submodule U of V is indispensable.

Example. Let p be an odd prime so that p−1 is divisible by three distinct primes
q, r and s with s dividing r + 1; for example p = 211, q = 7, r = 5 and s = 3. Let
V1 be the additive group of the field with p elements. The multiplicative group of
this field contains a cyclic group of order qrs which acts by multiplication on V1 by
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automorphisms. Let us denote the cyclic subgroups of this group of orders q, r and
s respectively by Q1, F1 and H. So Q1 × F1 ×H 6 Z∗p and the semidirect product
V1(Q1 × F1 ×H) is a Frobenius group of order pqrs.

Let F = E1 × E2 where Ei, i = 1, 2, are extraspecial groups of order r3 and
exponent r. Let Z(Ei) = 〈zi〉 , i = 1, 2, and τ = z1z2. Identify 〈τ〉 (∼= Z5) with F1.

Each Ei and hence F admits an automorphism of order s acting trivially on F ′

and regularly on F/F ′. We identify the group generated by this automorphism with
H.

Since H is of odd order and acts semiregularly on F/F ′ we can choose a transversal
T for F1 in F such that

(1) 〈z1〉 ⊂ T,
(2) T is closed with respect to taking inverses,
(3) T is H-invariant.

Then T is a disjoint union of H-orbits Tj, j = 1, 2, . . . ,m, where Ti, i = 1, 2, . . . , r,
are orbits of length 1, with T1 ∪ T2 ∪ . . . ∪ Tr = 〈z1〉 and Ti, i = r + 1, r + 2, . . . ,m,
are the orbits of length s.

The group F1 acts by automorphisms on G = V1Q1. This allows to define an
action of F by automorphisms on the group B = {(gt)t∈T : gt ∈ G, t ∈ T} with
componentwise operation by

[(gt)t∈T ]σ := (g
a(t,u−1)−1z

t·u−1 )t∈T

where z ∈ F1, u ∈ T and σ = zu where for any x and y in T we have a uniquely
determined element x · y ∈ T and a uniquely determined element a(x, y) of F1 such
that

xy = a(x, y) x · y.
Consider the semidirect productBF. The action ofH onG and on F can be extended
to an action of H on BF as follows:

[(gt)t∈Tσ]h := [(ghth−1)h]t∈Tσ
h

Let V0 = {(xt)t∈T : xt ∈ V1, t ∈ T}, Q0 = { (xt)t∈T : xt ∈ Q1, t ∈ T}. From now
on we denote {(xt)t∈T : xu ∈ V1, xt = 1 for any u 6= t ∈ T} by Vu, u ∈ T (this
needs of course the identification of the group V1 with the subgroup of V0 defined
as {(xt)t∈T : x1 ∈ V1, xt = 1 for 1 6= t ∈ T} ∼= V1) and {(xt)t∈T : xu ∈ Q1, xt = 1 for
any u 6= t ∈ T} by Qu, u ∈ T (this needs of course the identification of the group Q1

with the subgroup of Q0 defined as {(xt)t∈T : x1 ∈ Q1, xt = 1 for 1 6= t ∈ T} ∼= Q1).
Then V0 is elementary abelian of order p|T |, Q0 is elementary abelian of order q|T |,

V0 E B = V0Q0. Both V0 and Q0 are FH-invariant.
Each Vt is F1-invariant and F1 acts fixed point freely on Vt, t ∈ T. Thus CV0(F ) =

CV0(F1) = 1. We also have [Q0, F1] = 1.
Let H = 〈h〉 and let U = {u, huh−1, h2uh−2, . . . , hs−1uh−s+1} be an H-orbit

on T of length s for some u ∈ T. Then H normalizes the subspace
⊕

t∈U Vt =
VU and if (a1, a2, . . . , as) ∈ Vu ⊕ Vhuh−1 ⊕ · · · ⊕ Vhs−1uh−s+1 then (a1, a2, . . . , as)

h =
(ahs , a

h
1 , a

h
2 , . . . , a

h
s−1) and hence the set of fixed points of H on VU consists of

(a, ah, . . . , ah
s−1

), a ∈ Vu. On the other hand H acts fixed point freely on Vt for any
t ∈ 〈z1〉 . This shows that CV0(H) is a subspace of dimension m − r and gives how
we can write down explicitly that subspace, making use of V0 =

⊕m
i=1

⊕
t∈Ti Vt.
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Let K0 =
⊕r

i=1

⊕
t∈Ti Qt =

⊕r
i=1 Qzi1

. Then K0 6 CQ0(H) and [K0, CV0(H)] = 1.

Set V = [V0, F ] = V0 and Q = [Q0, F ] and consider the group V QFH. Here FH
is a Frobenius-like group acting on the group V Q by automorphisms such that
CV Q(F ) = 1. Let K1 = K0 ∩ Q. Since 〈z1〉 acts on K0 and [K0, 〈z1〉] is a maximal
subspace of K0 (of dimension r − 1) we see that K1 is nontrivial and does not
centralize V. One can observe that K1 6 Ker(CQ(H) on CV (H)).

3. proof of Theorem

As (|G| , |FH|) = 1 and the action of F ′ on the group G/Fn−1(G) is Frobenius,

there exists an irreducible FH-tower P̂1, . . . , P̂n in the sense of [7] where

(a) P̂i is an FH-invariant pi-subgroup, pi is a prime, pi 6= pi+1, for i = 1, . . . , n−1;

(b) P̂i 6 NG(P̂j) whenever i 6 j;

(c) Pn = P̂n and Pi = P̂i/CP̂i
(Pi+1) for i = 1, . . . , n−1 and Pi 6= 1 for i = 1, . . . , n;

(d) Φ(Φ(Pi)) = 1, Φ(Pi) 6 Z(Pi), and exp(Pi) = pi when pi is odd for i = 1, . . . , n;
(e) [Φ(Pi+1), Pi] = 1 and [Pi+1, Pi] = Pi+1 for i = 1, . . . , n− 1;

(f) (Πj<iP̂j)FH acts irreducibly on Pi/Φ(Pi) for i = 1, . . . , n;
(g) the action of F ′ on P1 is Frobenius.

We observe that CP1(H) 6= 1 by Corollary 3.4 in [4] applied to the action of FH

on P1/Φ(P1). So it is clear that the sequence CP̂1
(H), [P̂2, CP̂1

(H)], P̂3, . . . , P̂n forms
also an F ′H-tower. It also follows by the hypothesis that the action of F ′ on CP1(H)
is also Frobenius.

Let now 〈y〉 be a maximal subgroup of F ′ of prime power order. As [CP̂1
(H), x] 6= 1

for any x ∈ F ′ of prime order, by Theorem 3.3 in [1] we observe that the sequence
C[P̂2,CP̂1

(H)](y), CP̂3
(y), . . . , CP̂n

(y) forms an F ′H-tower. Notice that the group F/〈y〉
has derived subgroup of prime order. By Theorem A in [2] applied to the action
of the Frobenius-like group FH/〈y〉 on CG(y) we get f(CG(y)) = f(CG(〈y〉H)) =
n−1. This forces that C[P̂2,CP̂1

(H)](H), CP̂3
(H), . . . , CP̂n

(H) forms a tower and hence

f(CG(H)) > n − 1. Notice that [CP̂2
(H), CP̂1

(H)] = [CP̂2
(H), CP̂1

(H), CP̂1
(H)] 6

[C[P̂2,CP̂1
(H)](H), CP̂1

(H)] and [C[P̂2,CP̂1
(H)](H), CP̂1

(H)] 6 [CP̂2
(H), CP̂1

(H)]. That

is [C[P̂2,CP̂1
(H)](H), CP̂1

(H)] = [CP̂2
(H), CP̂1

(H)]. As a consequence we see that

[CP̂2
(H), CP̂1

(H)], CP̂3
(H), . . . , CP̂n

(H) is a tower.

On the other hand, as [P̂1, x] = P̂1 for any x ∈ F ′, Proposition applied to the
action of P1FH on V = P2/Φ(P2) yields that

Ker(CP1(H) onCV (H)) = Ker(CP1(H) on V ) = 1.

This forces that CP̂1
(H), [CP̂2

(H), CP̂1
(H)], CP̂3

(H), . . . , CP̂n
(H) forms a tower and

hence f(CG(H)) = f(G) = n as desired.
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[3] G. Ercan, İ. Ş. Güloğlu, and E. I. Khukhro, Rank and Order of a Finite Group admitting a
Frobenius-like Group of Automorphisms, Algebra and Logic 53 (3) (2014) 258-265.
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