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Review of Ideal Gas Thermodynamics

• Ideal gas equation of state is

𝑝 = 𝜌𝑅𝑇

where 𝑅 is the gas constant.

• By defining specific volume as 𝑣 = 1/𝜌 ideal gas law becomes

𝑝𝑣= 𝑅𝑇

• For an ideal gas internal energy ( 𝑢) is a function of temperature only.

• Ideal gas specific heat at constant volume is defined as

𝑐𝑣=
𝑑 𝑢

𝑑𝑇

• 𝑐𝑣 is also a function of temperature, but for moderate temperature changes it can be 
taken as constant. In this course we’ll take 𝑐𝑣 as constant.

• Change in internal energy between two states is (considering constant 𝑐𝑣)

 𝑢2−  𝑢1 = 𝑐𝑣 (𝑇2 −𝑇1)
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Review of Ideal Gas Thermodynamics (cont’d)

• Enthalpy is defined as

ℎ =  𝑢 +
𝑝

𝜌
=  𝑢 + 𝑅𝑇

• For an ideal gas enthalpy is also a function of temperature only.

• Ideal gas specific heat at constant pressure is defined as

𝑐𝑝 =
𝑑ℎ

𝑑𝑇

• 𝑐𝑝 will also be taken as constant in this course. For constant 𝑐𝑝 change in enthalpy is 

ℎ2−ℎ1 = 𝑐𝑝 (𝑇2 −𝑇1)

• Combining the definition of 𝑐𝑣 and 𝑐𝑝

𝑐𝑝− 𝑐𝑣 =
𝑑ℎ

𝑑𝑇
−
𝑑 𝑢

𝑑𝑇
= 𝑅
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Review of Ideal Gas Thermodynamics (cont’d)

• For air

𝑐𝑝− 𝑐𝑣= 𝑅

• Specific heat ratio is (also shown with 𝛾)

𝑘 =
𝑐𝑝

𝑐𝑣

which has a value of 1.4 for air.

• Combining the above relations we can also obtain

𝑐𝑝 =
𝑅𝑘

𝑘 − 1
, 𝑐𝑣 =

𝑅

𝑘 −1

1.005
𝑘𝐽

𝑘𝑔𝐾
0.718

𝑘𝐽

𝑘𝑔𝐾

0.287
𝑘𝐽

𝑘𝑔𝐾
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Review of Ideal Gas Thermodynamics (cont’d)

• Entropy change for an ideal gas is expressed with 𝑇𝑑𝑠 relations

𝑇𝑑𝑠 = 𝑑 𝑢 +𝑝 𝑑
1

𝜌
, 𝑇𝑑𝑠= 𝑑ℎ −

1

𝜌
𝑑𝑝

• Integrating these 𝑇𝑑𝑠 relations for an ideal gas

𝑠2− 𝑠1= 𝑐𝑣 𝑙𝑛
𝑇2

𝑇1
+ 𝑅 𝑙𝑛

𝜌1

𝜌2
, 𝑠2−𝑠1 = 𝑐𝑝 𝑙𝑛

𝑇2

𝑇1
− 𝑅 𝑙𝑛

𝑝2

𝑝1

• For an adiabatic (no heat transfer) and frictionless flow, which is known as isentropic 
flow, entropy remains constant.

Exercise : For isentropic flow of an ideal gas with constant specific heat values, derive 
the following commonly used relations, known as isentropic relations

𝑇2

𝑇1

𝑘/(𝑘−1)

=
𝜌2

𝜌1

𝑘

=
𝑝2

𝑝1 4-6

Mach Number and the Speed of Sound

• Compressibility effects become important when a fluid moves with speeds comparable 
to the local speed of sound (𝑐).

• Mach number is the most important nondimensional number for compressible flows

𝑀𝑎 = 𝑉/ 𝑐

• 𝑀𝑎 < 0.3 Incompressible flow (density changes are negligible)

• 0.3 < 𝑀𝑎< 0.9 Subsonic flow (density changes are important, shock waves

do not develop)

• 0.9 < 𝑀𝑎< 1.1 Transonic flow (shock waves may appear and divide the flow field

into subsonic and supersonic regions)

• 1.1 < 𝑀𝑎< 5.0 Supersonic flow (shock waves may appear, there are no

subsonic regions)

• 𝑀𝑎 > 5.0 Hypersonic flow (very strong shock waves and property

changes)
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Speed of Sound (𝑐)

• Speed of sound is the rate of propagation of a pressure pulse (wave) of infinitesimal 
strength through a still medium (a fluid in our case).

• It is a thermodynamic property of the fluid.

• For air at standard conditions, sound moves with a speed of  𝑐 = 343 m/s.

Exercise: a) What’s the speed of sound in air at 5 km and 10 km altitudes?

b) What’s the speed of sound in water at standard conditions?
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Speed of Sound (cont’d)

• To obtain a relation for the speed of sound consider the following experiment

• A  duct is initially full of still gas with properties  𝑝,𝜌, 𝑇and 𝑉 = 0

• The piston is pushed into the fluid with an infinitesimal velocity.

• A pressure wave of infinitesimal strength will form and it’ll travel in the gas with the 
speed of sound 𝑐.

• As it passes over the gas particles it will create infinitesimal property changes.

𝑝
𝜌

𝑇
𝑉 = 0

𝑐

𝑝
𝜌
𝑇

𝑉 = 0

𝑝 +𝑑𝑝
𝜌 +𝑑𝜌
𝑇 +𝑑𝑇
0+ 𝑑𝑉

Wave front moving with speed 𝑐
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Speed of Sound (cont’d)

• For an observer moving with the wave front with speed 𝑐, wave front will be stationary 
and the fluid on the left and the right would move with relative speeds

• Consider a control volume enclosing the stationary wave front. The flow is one-
dimensional and steady. It has one inlet and one exit.

𝑝
𝜌
𝑇

Stationary wave front with respect 
to an observer moving with it

𝑝+ 𝑑𝑝
𝜌+ 𝑑𝜌
𝑇 + 𝑑𝑇

𝑐𝑐 − 𝑑𝑉

Inlet and exit cross sectional areas 
are the same (𝐴)

𝑐 − 𝑑𝑉 𝑐
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Speed of Sound (cont’d)

Exercise: Using conservation of mass and momentum on the CV of the previous slide, 
derive the following expression for the speed of sound.

Exercise : In deriving the speed of sound equation, we did not make use of the energy 
equation. Show that it can also be used and gives the same result.

Exercise : What is the speed of sound for a perfectly incompressible fluid.

Exercise : Show that speed of sound for an ideal gas is given by

Propagation of a sound wave 
is an isentropic process

𝑐 =
𝑑𝑝

𝑑𝜌
𝑠

𝑐 = 𝑘𝑅𝑇
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Wave Propagation in a Compressible Fluid

• Consider a point source generating small pressure pulses (sound waves) at regular 
intervals.

• Case 1 : Stationary source

• Waves travel in all directions symmetrically.

• The same sound frequency will be heard everywhere around the source.
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Wave Propagation in a Compressible Fluid (cont’d)

• Case 2 : Source moving with less than the speed of sound (𝑀𝑎 < 1)

• Waves are not symmetric anymore.

• An observer will hear different sound frequencies depending on his/her location.

• This asymmetry is the cause of the Doppler effect.
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Wave Propagation in a Compressible Fluid (cont’d)

• Case 3 : Source moving the speed of sound (𝑀𝑎 = 1)

• The source moves with the same speed as the sound waves it generates.

• All waves concentrate on a plane passing through the moving source creating a     
Mach wave, across which there is a significant pressure change.

• Mach wave separates the field into two as zone of silence and zone of action.

Zone of 
action

Zone of 
silence

𝑉 = 𝑐

• First aircraft exceeding the speed of sound : http://en.wikipedia.org/wiki/Bell_X-1
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Wave Propagation in a Compressible Fluid (cont’d)

• Case 4 : Source moving with more than the speed of sound (𝑀𝑎> 1)

• The source travels faster than the sound it generates. 

• Mach cone divides the field into zones of action and silence.

• Half angle of the Mach cone is called the Mach angle 𝜇.

Zone of 
action

Zone of 
silence

𝑉 > 𝑐

𝜇
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Wave Propagation in a Compressible Fluid (cont’d)

Exercise : For ‘‘Case 4’’ described in the previous slide show that

sin 𝜇 = 1/𝑀𝑎

Exercise : A supersonic airplane is traveling at an altitude of 4 km. The noise 
generated by the plane at point A reached the observer on the ground at point B after 
20 s. Assuming isothermal atmosphere, determine

a) Mach number of the airplane
b) distance traveled by the airplane before the observer hears the noise
c) velocity of the airplane
d) temperature of the atmosphere

F/A-18 breaking
the sound barrier

http://en.wikipedia.org

A

B

𝐻 = 4 km

𝐿 = 5 km

Ground
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1D, Isentropic, Compressible Flow

• Consider an internal compressible flow, such as the one in a duct of variable cross 
sectional area

• Flow and fluid properties inside this duct may change due to

• Cross sectional area change

• Frictional effects

• Heat transfer effects

• In ME 306 we’ll study these flows as 1D and consider only the effect of area change, 
i.e. assume isentropic flow.

NOT the subject of ME 306.
Without these the flow is isentropic.

http://en.wikipedia.org/wiki/Bell_X-1


• Conservation of energy for a control volume 
enclosing the fluid between sections 1  and 2 is

𝑞 − 𝑤 = ℎ2+
𝑉2
2

2
+𝑔𝑧2 − ℎ1+

𝑉1
2

2
+𝑔𝑧1

• Energy equation becomes
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1D, Isentropic, Compressible Flow (cont’d)

1 2

= 0
Heat transfer is zero for 

adiabatic flow. Also there is no 
work done other than the flow

work.

ℎ1+
𝑉1
2

2
= ℎ2+

𝑉2
2

2

For gas flows potential energy change 
is usually negligibly small compared to 
enthalpy and kinetic energy changes.

• The sum ℎ+
𝑉2

2
is known as stagnation enthalpy and it is constant inside the duct.

ℎ0 = ℎ +
𝑉2

2
= constant along the duct

• It is called ‘‘stagnation’’ enthalpy because at a stagnation point velocity is zero and the 
enthalpy of the gas is equal to ℎ0.
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Stagnation Enthalpy

stagnation 
enthalpy 

If the fluid is sucked into the duct 
from a ‘‘large’’ reservoir, the 
reservoir can be assumed to be 
at the stagnation state.

Large reservoir with 
negligible velocity

• Stagnation state is an important reference state for compressible flow calculations.

• It is the state achieved if a fluid at any other state is brought to rest isentropically.

• For an isentropic flow there will a unique stagnation state.
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Stagnation State

State 1
𝑉1, ℎ1, 𝑝1, 𝑇1 , etc.

Hypothetical 
isentropic 
deceleration

Hypothetical 
isentropic 
deceleration

State 2
𝑉2, ℎ2, 𝑝2, 𝑇2, etc.

Unique stagnation state
𝑉0 = 0, ℎ0, 𝑝0, 𝑇0 , etc.

1 2

0

• Isentropic deceleration can be shown on a ℎ −𝑠 diagram as follows
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Stagnation State (cont’d)

• During isentropic deceleration entropy remains  constant.

• Energy conservation:     ℎ0+
02

2
= ℎ +

𝑉2

2
→ ∆ℎ = ℎ0− ℎ =

𝑉2

2

Isentropic
deceleration

ℎ0

ℎ

ℎ

𝑠

𝑝0

𝑝

∆ℎ =
𝑉2

2
Any state
𝑉, ℎ, 𝑝,
𝑇, 𝑠, etc.

Stagnation state
𝑉0 = 0, ℎ0, 𝑝0,
𝑇0, 𝑠0, etc.



Exercise : For the isentropic flow of an ideal gas, express the following ratios as a 
function of Mach number and generate the following plot for air with 𝑘 = 1.4.
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Stagnation State (cont’d)

1.0

0.5

0         1        2        3         4        5

𝑀𝑎

𝑇

𝑇0 𝜌

𝜌0
𝑝

𝑝0

𝑇

𝑇𝑜
= 1+

𝑘 − 1

2
𝑀𝑎2

−1

𝑝

𝑝𝑜
= 1 +

𝑘 −1

2
𝑀𝑎2

−𝑘/(𝑘−1)

𝜌

𝜌𝑜
= 1+

𝑘 −1

2
𝑀𝑎2

−1/(𝑘−1)
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Stagnation State (cont’d)

Exercise : An airplane is crusing at a speed of 900km/h at an altitude of 10 km. 
Atmospheric air at −60℃comes to rest at the tip of its pitot tube. Determine 
the temperature rise of air.

Read about heating of space shuttle during its reentry to the earth’s atmosphere.

http://en.wikipedia.org/wiki/Space_Shuttle_thermal_protection_system

Exercise : An aircraft cruises at 12 km altitude. A pitot-static tube on the nose of 
the aircraft measures stagnation and static pressures of 2.6 kPa and 19.4 kPa, 
respectively. Calculate

a) Mach number of the aircraft

b) speed of the aircraft

c) stagnation temperature that would be sensed by a probe on the aircraft.
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Stagnation State (cont’d)

2.0

1.4

0      0.2     0.4     0.6     0.8      1

𝑀𝑎

1.8

1.6

1.2

1.0

Compressible
(Slide 4-21)

Incompressible
(BE)

𝑝0

𝑝

Exercise : Using the incompressible form of the Bernoulli’s equation, derive an 
expression for 𝑝0/𝑝 for incompressible flows. Compare it with the one given in    
Slide 4-21. Determine the Mach number below which two equations agree within 
engineering accuracy.

Exercise : Consider the differential control volume shown below for 1D, isentropic 
flow of an ideal gas through a variable area duct. Using conservation of mass, linear 
momentum and energy, determine the

a) Change of pressure with area

b) Change of velocity with area
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Simple Area Change Flows (1D Isentropic Flows)

𝑝
𝜌
𝑉
ℎ
𝐴

𝑝 +𝑑𝑝
𝜌 +𝑑𝜌
𝑉 +𝑑𝑉
ℎ +𝑑ℎ
𝐴 +𝑑𝐴

𝑑𝑥

𝑥

http://en.wikipedia.org/wiki/Space_Shuttle_thermal_protection_system
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Simple Area Change Flows (cont’d)

• Results of the previous exercise are

𝑑𝐴

𝐴
=

𝑑𝑝

𝜌𝑉2
1− 𝑀𝑎2 ,

𝑑𝐴

𝐴
= −

𝑑𝑉

𝑉
1− 𝑀𝑎2

𝑑𝐴 > 0

Diffuser

𝑑𝑝 > 0

𝑑𝑉< 0

Nozzle

𝑑𝑝 < 0

𝑑𝑉 > 0

Subsonic Flow  𝑀𝑎 < 1 Supersonic Flow  𝑀𝑎> 1

𝑑𝐴 < 0

𝑑𝐴 < 0

𝑑𝐴 > 0
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Simple Area Change Flows (cont’d)

• Sonic flow is a very special case. It can occur

• when the cross sectional area goes through a minimum, i.e. 𝑑𝐴= 0

• or at the exit of a subsonic nozzle or a supersonic diffuser

𝑀𝑎 < 1

𝑀𝑎 > 1

Sonic flow may occur at the throat.

Sonic flow may occur at these exits.
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de Laval Nozzle (C-D Nozzle)

Exercise : The nozzle shown below is called a converging diverging nozzle (C-D nozzle 
or Con-Div nozzle or de Laval nozzle).

Using the table of Slide 4-25 show that it is the only way to

• isentropically accelerate a fluid from subsonic to supersonic speed.

• isentropically decelerate a fluid from supersonic to subsonic speed.

de Laval nozzle

4-28

Critical State

• Critical state is the special state where the Mach number is unity.

• It is a useful reference state, similar to the stagnation state. It is useful even if there is 
no actual critical state in a flow.

• It is shown with an asterisk, like   𝑇 ∗, 𝑝∗ , 𝜌∗, 𝐴∗, etc.

• Ratios derived in Slide 4-21 can also be written using the critical state.

𝑝𝑜

𝑝∗
= 1 +

𝑘 −1

2

𝑘/(𝑘−1)

𝑇𝑜

𝑇 ∗
= 1+

𝑘 −1

2

𝜌𝑜

𝜌∗
= 1+

𝑘 −1

2

1/(𝑘−1)

𝑝𝑜

𝑝
= 1 +

𝑘 −1

2
𝑀𝑎2

𝑘/(𝑘−1)

𝑇𝑜

𝑇
= 1+

𝑘 −1

2
𝑀𝑎2

𝜌𝑜

𝜌
= 1+

𝑘 −1

2
𝑀𝑎2

1/(𝑘−1)

𝑀𝑎 = 1
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Critical State (cont’d)

Exercise : Similar to the ratios given in the previous slide, following area ratio is also a 
function of 𝑀𝑎and 𝑘 only. Derive it.

𝐴

𝐴∗
=

1

𝑀𝑎

1+
𝑘 − 1
2

𝑀𝑎2

𝑘 +1
2

𝑘+1

2(𝑘−1)

Exercise : Derive an expression in terms of 𝑀𝑎and 𝑘 for the following non-
dimensional mass flow rate.

 𝑚 𝑅𝑇0

𝐴𝑝0

3.0

0.5
0    0.5   1    1.5 2   2.5 3

𝑀𝑎

2.5

2.0

1.5

1.0

𝐴

𝐴∗

For 𝑘 = 1.4
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Isentropic Flow Table

• It provides the following ratios at different Mach numbers for a fixed 𝑘 value.

𝑇

𝑇0

𝑝

𝑝0

𝜌

𝜌0

𝐴

𝐴∗
 𝑚 𝑅𝑇0

𝐴𝑝0

Aksel’s Fluid Mechanics textbook
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Exercises for Simple Area Change Flows

Exercise : A converging duct is fed with air from a large reservoir where the 
temperature and pressure are 350 K and 200 kPa. At the exit of the duct, cross-
sectional area is 0.002 m2 and Mach number is 0.5. Assuming isentropic flow

a) Determine the pressure, temperature and velocity at the exit.

b) Find the mass flow rate.

Exercise : Air is flowing isentropically in a diverging duct. At the inlet of the duct, 
pressure, temperature and velocity are 40 kPa, 220 K and 500 m/s, respectively. Inlet 
and exit areas are 0.002 m2 and 0.003 m2.

a) Determine the Mach number, pressure and temperature at the exit.

b) Find the mass flow rate.
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Exercises for Simple Area Change Flows (cont’d)

Exercise : (Fox) Air flows isentropically in a channel. At an upstream section 1, Mach 
number is 0.3, area is 0.001 m2, pressure is 650 kPa and temperature is 62 ℃. At a 
downstream section 2, Mach number is 0.8.

a) Sketch the channel shape.

b) Evaluate properties at section 2.

c) Plot the process between sections 1 and 2 on a 𝑇 −𝑠 diagram.
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Shock Waves

• Sound wave is a weak wave, i.e. property changes across it are infinitesimally small.

• ∆𝑝across a sound wave is in the order of 10−9−10−3 atm.

• Shock wave is a strong wave, i.e. property changes across it are finite.

• Shock waves are very thin, in the order of 10−7 m.

• Fluid particles decelerate with millions of 𝑔’s through a shock wave.

• Shock waves can be stationary or moving.

• They can be normal (perpendicular to the flow direction) or oblique (inclined to the 
flow direction).

• A shock wave can be thought as a tool used for a flow to adjust itself to downstream 
conditions.

• In ME 306 we’ll consider stationary normal shock waves for 1D flows inside ducts.
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Oblique shock wave attached to the 
sharp nose of a bullet moving at 
supersonic speed.

Normal shock wave in a supersonic 
nozzle. Flow is from left to right. Extra 

waves are due to surface roughness

White’s Fluid Mechanics textbook

Shock Waves (cont’d)

Detached curved shock wave ahead 
of a blunt nosed object moving at 

supersonic speed.
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Formation of a Strong Wave

• A strong wave is formed by the accumulation of several weak compression waves.

• Compression waves are the ones across which pressure increase and velocity decrease 
in the flow direction.

• Sound wave is a weak compression wave.

• Consider a piston pushed with a finite velocity 𝑉 in a cylinder filled with still gas.

• We can decompose piston’s motion into a series of infinitesimally small disturbances.

• Weak compression waves will emerge from the piston, one after the other.

• The first two of such waves are sketched below.

𝑉 𝑐1
𝑝
𝑇

𝑉 = 0

First wave front

𝑐2

Second wave front

𝑝 + 𝑑𝑝
𝑇 + 𝑑𝑇
𝑑𝑉
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Formation of a Strong Wave (cont’d)

• First wave will cause an increase in temperature behind it.

• Second wave will move faster and eventually may catch the first one.

𝑐2 > 𝑐1

• A third one, which is not shown, will move even faster and may catch the first two 
waves.

𝑐3> 𝑐2 > 𝑐1

• Weak compression waves have a chance to accumulate into a strong wave of finite 
strength.

• Weak expansion waves that’ll be generated by pulling the piston to the left will not 
form such a strong wave.

𝑉 𝑝
𝑇

𝑉 = 0

Accumulated 
strong wave

𝑝 +∆𝑝
𝑇 +∆𝑇
∆𝑉
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Normal Shock Wave

• Consider a stationary normal shock wave in a 

duct of variable cross sectional area.

• Upstream and downstream states are denoted 

by 𝑥 and 𝑦.

𝑥 𝑦

• Due to very sudden, finite property changes, the process across the wave is 

considered to be non-isentropic. But it is considered to be adiabatic.

• There are two different stagnation states, state 0𝑥 for the flow before the shock and 

state 0𝑦 for the flow after the shock.

𝑝0𝑥 ≠ 𝑝0𝑦 and        𝜌0𝑥 ≠ 𝜌0𝑦

• However, because of the adiabatic assumption, stagnation temperatures and 

enthalpies are the same.

𝑇0𝑥 = 𝑇0𝑦 = 𝑇0 and         ℎ0𝑥 = ℎ0𝑦 = ℎ0

• Stagnation state concept can also be used for non-isentropic flows, but there will be 
multiple such states.

• If the flow is adiabatic ℎ0 , 𝑇0 and 𝑐0 will be unique, but not other stagnation 
properties such as 𝑝0 or 𝜌0.
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Stagnation State of a Non-isentropic, Adiabatic Flow

State 1
𝑉1, 𝑝1, ℎ1, 𝑇1, etc.

Isentropic 
deceleration

Isentropic 
deceleration

State 2
𝑉2, 𝑝2, ℎ2, 𝑇2,  etc.

Stagnation state of state 2
𝑉0 = 0, 𝑝02, 𝜌02,  ℎ0,  𝑇0 , etc.Stagnation state of state 1

𝑉0 = 0, 𝑝01, 𝜌01,  ℎ0,  𝑇0 , etc.

Non-isentropic, 
adiabatic flow 

(such as the one 
across a shock)

1 2
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Shock Wave on the𝑇 − 𝑠 Plane

𝑥 𝑦

Shock

𝑇

𝑠

𝑇0𝑥 = 𝑇0𝑦

𝑝𝑥
𝑇𝑥

𝑝𝑦
𝑇𝑦

𝑥

𝑦

𝑝0𝑥 𝑝0𝑦

𝑠𝑦− 𝑠𝑥

• A similar one can be drawn on the ℎ −𝑠 plane.
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Property Changes Across a Shock Wave

• Governing equations for the 1D flow inside the control volume enclosing the shock 
wave are

• Continuity :  𝑚 = 𝜌𝑥𝑉𝑥𝐴 = 𝜌𝑦𝑉𝑦𝐴 where        𝐴 = 𝐴𝑥 = 𝐴𝑦

• Momentum : 𝑝𝑥− 𝑝𝑦 𝐴 =  𝑚 𝑉𝑦− 𝑉𝑥

• Energy : ℎ0 = ℎ𝑥+
𝑉𝑥
2

2
= ℎ𝑦 +

𝑉𝑦
2

2

• Second Law : 𝑠𝑦 > 𝑠𝑥

𝑥 𝑦
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Property Changes Across a Shock Wave (cont’d)

• For the flow of an ideal gas with constant specific heats, we can work on the equations
of the previous slide to get the following (study the details from text books)

• Donwstream Mach number :

• Temperature ratio :

• Pressure ratio :

• Density ratio :

• Velocity ratio :

𝑀𝑎𝑦=
𝑘 −1 𝑀𝑎𝑥

2+ 2

2𝑘𝑀𝑎𝑥
2− (𝑘− 1)

𝑇𝑦
𝑇𝑥

=
1 +

𝑘 −1
2

𝑀𝑎𝑥
2 2𝑘

𝑘 − 1
𝑀𝑎𝑥

2− 1

𝑘 +1 2

2(𝑘− 1)
𝑀𝑎𝑥

2

𝑝𝑦
𝑝𝑥

=
2𝑘

𝑘 + 1
𝑀𝑎𝑥

2−
𝑘 −1

𝑘 +1

𝜌𝑦
𝜌𝑥

=
(𝑘+ 1)𝑀𝑎𝑥

2

2 +(𝑘 − 1)𝑀𝑎𝑥
2

𝑉𝑦
𝑉𝑥

=
𝜌𝑥
𝜌𝑦
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Property Changes Across a Shock Wave (cont’d)

• Stagnation pressure ratio :

• Critical area ratio :

• Entropy change :

• These relations are functions of 𝑀𝑎𝑥 and 𝑘 only. They are usually plotted or tabulated.

• Flow before the shock and after the shock are isentropic, but not across the shock.

• 𝑇0 is the same before and after the shock, due to adiabatic assumption (𝑇0𝑥 = 𝑇0𝑦).

• 𝑝0 changes across the shock  (𝑝0𝑥≠ 𝑝0𝑦).

• Critical states before and after the shock are different. This is seen from 𝐴𝑥
∗ ≠ 𝐴𝑦

∗ )

𝑝0𝑦
𝑝0𝑥

=

𝑘+ 1
2

𝑀𝑎𝑥
2

1+
𝑘 −1
2

𝑀𝑎𝑥
2

𝑘
𝑘−1

2𝑘

𝑘 +1
𝑀𝑎𝑥

2−
𝑘 −1

𝑘 +1

1
1−𝑘

𝐴𝑦
∗

𝐴𝑥
∗ =

𝑝0𝑥
𝑝0𝑦

𝑠𝑦 −𝑠𝑥
𝑅

= −𝑙𝑛
𝑝0𝑦
𝑝0𝑥
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Property Changes Across a Shock Wave (cont’d)

Aksel’s book

• Tabulated form of these normal shock relations look like the following
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Property Changes Across a Shock Wave (cont’d)

• Across a normal shock wave

𝑀𝑎, 𝑉, 𝑝0 decreases

𝑝, 𝑇, 𝜌, 𝐴∗, 𝑠 increases

𝑇0 remains the same

• Kinetic energy of the fluid after the shock 

wave is smaller than the one that would 

be obtained by a reversible compression 

between the same pressure limits.

• Lost kinetic energy is the reason of 

temperature increase across the shock 

wave.

6

1 1.5        2        2.5       3        3.5       4

𝑀𝑎𝑥

5

4

3

2

1

0

𝑝𝑦
𝑝𝑥

𝑇𝑦
𝑇𝑥

𝐴𝑦
∗

𝐴𝑥
∗ =

𝑝0𝑥
𝑝0𝑦

𝑉𝑥
𝑉𝑦

=
𝜌𝑦
𝜌𝑥

𝑝0𝑦
𝑝0𝑥

𝑀𝑎𝑦

For 𝑘 = 1.4
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Normal Shock Wave (cont’d)

Exercise : (Munson) A total pressure probe is inserted into a supersonic air flow. A 

shock wave forms just upstream of the stagnation point. The probe measures a 

stagnation pressure of 410 kPa. The stagnation temperature at the probe tip is 

measured with a thermocouple and found to be 555 K. The static pressure upstream 

of the shock is measured with a wall tap to be 83 kPa. Determine the Mach number 

and the velocity of the flow.
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Normal Shock Wave (cont’d)

Exercise : (Fox) Air with speed 668 m/s, temperature 5 oC and pressure 65 kPa goes 

through a normal shock wave.

a) Determine the Mach number, pressure, temperature, speed, stagnation pressure 

and stagnation temperature after the shock wave,

b) Calculate the entropy change across the shock wave.

c) Show the process on a 𝑇 −𝑠diagram.

Exercise : Supersonic air flow inside a diverging duct is slowed down by a normal 

shock wave. Mach number at the inlet and exit of the duct are 2.0 and 0.3. Ratio of 

the exit to inlet cross sectional areas is 2. Pressure at the inlet of the duct is 40 kPa. 

Assuming adiabatic flow determine the pressure after the shock wave and at the exit 

of the duct.
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Operation of a Converging Nozzle

• Consider a converging nozzle.

• Gas is provided by a large reservoir with stagnation properties, 𝑇0 and 𝑝0.

• Back pressure 𝑝𝑏 is adjusted using a vacuum pump to obtain different flow conditions 

inside the nozzle.

• Exit pressure 𝑝𝑒 and back pressure 𝑝𝑏 can be equal or different.

𝑇0

𝑝0

𝑉 = 0 𝑝𝑒

𝑝𝑏

4-48

Operation of a Converging Nozzle (cont’d)

• First set 𝑝𝑏 = 𝑝0. There will be no flow.

• Gradually decrease 𝑝𝑏. Following pressure distributions will be observed.

𝑝

𝑥

1 : No flow (𝑝𝑏 = 𝑝0)𝑝0

𝑝∗

2 : 𝑝∗ < 𝑝𝑏 < 𝑝0

3 : Critical (𝑝𝑏 = 𝑝∗)

Subcritical
regime

4 : 𝑝𝑏 < 𝑝∗
Supercritical
regime

𝑀𝑎= 1

(choked flow)
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Operation of a Converging Nozzle (cont’d)

• When air is supplied from a stagnation reservoir, flow inside a converging nozzle always 

remains subsonic.

• For the subcritical regime, mass flow rate increases as 𝑝𝑏 decreases.

• State shown with * is the critical state. When 𝑝𝑏 is lowered to the critical value 𝑝∗, exit 

Mach number reaches to 1 and flow is said to be choked.

• If 𝑝𝑏 is lowered further, flow remains choked. Pressure and Mach number at the exit do 

not change. Mass flow rate through the nozzle does not change.

• For 𝑝𝑏 < 𝑝∗, gas exits the nozzle as a supercritical jet with 𝑝𝑒 > 𝑝𝑏. Exit jet undergoes a 

non-isentropic expansion to reduce its pressure to 𝑝𝑏.

• From slide 4-28   
𝑝∗

𝑝0
=

2

𝑘+1

𝑘/(𝑘−1)

. For air (𝑘 = 1.4)choking occurs when  
𝑝∗

𝑝0
= 0.528.
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Operation of a Converging Nozzle (cont’d)

• Case 1 is the no flow case.

• From case 1 to case 3, lowering 𝑝𝑏 decreases 𝑝𝑒and increases  𝑚.

• Case 3 is the critical case with minimum possible 𝑝𝑒and maximum possible  𝑚.

• Cases 3 and 4 are choked flow with 𝑀𝑎𝑒 = 1.

𝑝𝑏

2

1

34

𝑝∗ 𝑝0

 𝑚

 𝑚𝑚𝑎𝑥

Variation of  𝑚with 𝑝𝑏

2
1

34

𝑝0

𝑝𝑏
𝑝∗ 𝑝0

𝑝𝑒

Variation of 𝑝𝑒with 𝑝𝑏
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Operation of a Converging Nozzle (cont’d)

Exercise : (Aksel’s book) A converging nozzle is fed with air from a large reservoir 

where the pressure and temperature are 150 kPa and 300 K. The nozzle has an exit 

cross sectional area of 0.002 m2. Back pressure is set to 100 kPa. Determine

a) the pressure, Mach number and temperature at the exit.

b) mass flow rate through the nozzle.

Exercise : (Aksel’s book) Air flows through a converging duct and discharges into a 

region where the pressure is 100 kPa. At the inlet of the duct, the pressure, 

temperature and speed are 200 kPa, 290 K and 200 m/s. Determine the Mach 

number, pressure and temperature at the nozzle exit. Also find the mass flow rate per 

unit area.
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Operation of a Conv-Div Nozzle

• We first set 𝑝𝑏 = 𝑝0and then gradually decrease 𝑝𝑏.

Throat

𝑝

𝑥

1 : No flow (𝑝𝑏 = 𝑝0)𝑝0

𝑝∗
5y : Shock at the exit Choked 

flow. 
Same  𝑚

2 : Subsonic Flow
3 : Initial choked flow (𝑀𝑎𝑡ℎ𝑟𝑜𝑎𝑡= 1)

4 : Flow with shock

6 : Overexpansion

8 : Underexpansion

7 : Design condition
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Operation of a Conv-Div Nozzle (cont’d)

• Flow inside the converging section is always subsonic.

• At the throat the flow can be subsonic or sonic.

• The flow is choked if 𝑀𝑎throat = 1. This corresponds to the maximum  𝑚 that can pass 

through the nozzle.

• Under choked conditions the flow in the diverging part can be subsonic (case 3) or 

supersonic (cases 6, 7 ,8).

• Depending on 𝑝𝑏 there may be a shock wave in the diverging part. Location of the 

shock wave is determined by 𝑝𝑏.

• Design condition corresponds to the choked flow with supersonic exit without a shock.

• Overexpansion (𝑝𝑒 < 𝑝𝑏): Exiting jet finds itself in a higher pressure medium and 

contracts. Underexpansion (𝑝𝑒 > 𝑝𝑏): Exiting jet finds itself in a lower pressure 

medium and expands. For details and pictures visit http://aerorocket.com/Nozzle/Nozzle.html

and http://www.aerospaceweb.org/question/propulsion/q0224.shtml 4-54

Operation of a Conv-Div Nozzle (cont’d)

5y

1
3

8

𝑝0

𝑝𝑏𝑝0

𝑝𝑒

5x
7 6

4 2

Variation of 𝑝𝑒with 𝑝𝑏

𝑝𝑑𝑒𝑠𝑖𝑔𝑛

𝑝

𝑥

1𝑝0

𝑝∗
5y

2
3
4

6

8
7

Throat

2

1

3
4

5y

6

7

8

𝑝𝑏
𝑝0

 𝑚

 𝑚𝑚𝑎𝑥

Variation of  𝑚with 𝑝𝑏
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Operation of a Conv-Div Nozzle (cont’d)

𝑝

𝑥

1𝑝0

𝑝∗
5y

2
3
4

6

8
7

Throat

http://aerorocket.com

2 & 3

4

5

6

7

8
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Operation of a Conv-Div Nozzle (cont’d)

Exercise : Air is supplied to a C-D nozzle from a large reservoir where stagnation 

pressure and temperature are known. Determine

a) the Mach number, pressure and temperature at the exit

b) the mass flow rate

𝑇0 = 318K

𝑝0= 327 kPa

𝐴𝑒 = 0.0038m2

𝑝𝑏 = 30 kPa

𝐴𝑡 = 0.0022m2

http://aerorocket.com/Nozzle/Nozzle.html
http://www.aerospaceweb.org/question/propulsion/q0224.shtml
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Operation of a Conv-Div Nozzle (cont’d)

Exercise : Air flows in a Conv-Div nozzle with an exit to throat area ratio of 2.1. 

Properties at a section in the converging part are measured as follows.

a) Determine the ranges of back pressure for different flow regimes.

b) If a shock wave is observed where the area is twice of the throat area, determine 

the back pressure.

𝑝1= 128kPa

𝑇1 = 294K

𝑉1 = 135m/s

1


