LINEAR VECTOR SPACES

GENERAL DEFINITIONS AND CONSIDERATIONS

We know that a vector \mathbf{u} in E_{3} (3D Euclidean space) can be expressed as an ordered triplet of numbers: $\mathbf{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right) . \mathrm{E}_{3}$ is a 3D vector space $\left(\mathrm{R}^{3}\right)$ in which the inner (scalar) product is defined. We now generalize the real vector space to n dimensions and designate it by R^{n}. An element \mathbf{u} of R^{n} has the form $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ with the following properties:
i) If \mathbf{u} and \mathbf{v} are any two vectors in R^{n}, then $\mathbf{u}+\mathbf{v}$ would be in R^{n}; in other words, R^{n} is closed under vector addition. Further, the vector addition obeys the rules :

1) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for all \mathbf{u} and \mathbf{v} in R^{n}
2) $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$ for all \mathbf{u}, \mathbf{v} and \mathbf{w} in R^{n}
3) there exists a a unique zero vector " $\mathbf{0}$ " in R^{n} so that $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$ for all \mathbf{u} in R^{n}
4) for each \mathbf{u} in R^{n} there exists a unique vector "-u" so that $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0}$
ii) If \mathbf{u} is any vector in R^{n} and c is any real number, then "cu" would be in R^{n}; in other words, R^{n} is closed under scalar multiplication. Further, scalar multiplication obeys the rules :
5) $\mathbf{c u}=\mathbf{u c}$ for any \mathbf{u} in R^{n} and any real number " c "
6) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$ for any \mathbf{u} and \mathbf{v} in R^{n}, and any real number "c"
7) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$ for any \mathbf{u} in R^{n}, and any real numbers " c " and "d"
8) $(c d) \mathbf{u}=c(d \mathbf{u})$ for any \mathbf{u} in R^{n}, and any real numbers " c " and " d "
9) (1) $\mathbf{u}=\mathbf{u}$ and (0) $\mathbf{u}=\mathbf{0}$ for any \mathbf{u} in R^{n}

A complex vector space is a collection of elements satisfying the conditions in (i) and (ii) stated above; but, in this case, the multiplication by a complex number is allowed in (ii).

Even though the properties in (i) and (ii) are given to define R^{n} (n -dimensional real vector space), they also define an abstract vector space (V); in other words, any space with the elements satisfying the conditions in(i) and (ii) is called a vector space.

Example : A space with the elements of the form ($\mathrm{a}, \mathrm{a}^{2}$) is not a vector space because it is not closed under addition. In fact consider two elements, say \mathbf{A} and \mathbf{B}, of that space :

$$
\mathbf{A}=\left(\mathrm{a}, \mathrm{a}^{2}\right) ; \mathbf{B}=\left(\mathrm{b}, \mathrm{~b}^{2}\right)
$$

whose addition gives: $\mathbf{A}+\mathbf{B}=\left(\mathrm{a}+\mathrm{b}, \mathrm{a}^{2}+\mathrm{b}^{2}\right)$ which is not an element of the space under consideration.

Example :Consider the space P_{2} of second order polynomials: $\mathrm{P}_{2}(\mathrm{x})=\mathrm{c}_{0}+\mathrm{c}_{1} * \mathrm{x}+\mathrm{c}_{2} * \mathrm{x}^{2}$ (where c_{i} are some constants). This space is a vector space since it satisfies all of the conditions in (i) and (ii) [you verify this as home exercise].

Example : The space of (2x2) matrices with the elements of the form : $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is a vector space because the elements of that space satisfy all of the conditions in (i) and (ii).

Subspace of a Vector Space : Let V be a vector space and W be a subset of V. Then, W would be a subspace of V if only if W is closed under vector addition and scalar multiplication.

We note that not all subsets of a vector space are subspaces. For example, the subset of R^{3} containing all the vectors of the form ($u_{1}, u_{2}, 1$) is not a subspace of R^{3} since it is not closed under vector addition, as well as, under multiplication by scalar. On the other hand, the subset with the elements of the form ($\mathrm{u}_{1}, \mathrm{u}_{2}, 0$) would be a subpspace of R^{3} [verify this as home exercise].

Linear Combination of Vectors: Let $S=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ be a set of vectors in a vector space V. The vector

$$
\mathbf{v}=\mathrm{c}_{1} \mathbf{u}_{1}+\mathrm{c}_{2} \mathbf{u}_{\mathbf{2}}+\ldots \mathrm{c}_{\mathrm{n}} \mathbf{u}_{\mathbf{n}} \text { with } \mathrm{c}_{\mathrm{i}} \text { 's being real numbers }
$$

is called a linear combinations of the vectors in S .
Vectors Spanning a Vector Space : Let $S=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ be a set of vectors in a vector space V . The set S spans V if every vector in V can be expressed as a linear combination of the vectors in S . We say that V is spanned by S , and S is the spanning set of V whenever S spans V.

Example : Show that the set $\{(1,0,0),(1,1,0),(1,1,1)\}$ spans R 3.
Solution : We take an arbitrary vector in R^{3}, say $\mathbf{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ and we show that it can be expressed as a linear combination of the vectors in S . To this end, we write

$$
c_{1}(1,0,0)+c_{2}(1,1,0)+c_{3}(1,1,1)=\left(u_{1}, u_{2}, u_{3}\right)
$$

which leads to a system of linear equations: $c_{1}+c_{2}+c_{3}=u_{1}$

$$
\mathrm{c}_{1}+\mathrm{c}_{2}=\mathrm{u}_{2}
$$

$$
\mathrm{c}_{3}=\mathrm{u}_{3}
$$

whose solution gives : $\mathrm{c}_{1}=\mathrm{u}_{1}-\mathrm{u}_{2} ; \mathrm{c}_{2}=\mathrm{u}_{2}-\mathrm{u}_{3} ; \mathrm{c}_{3}=\mathrm{u}_{3}$. This completes the verification. For example, we can use the above solution for :

$$
(-2,5,7)=-7(1,0,0)-2(1,1,0)+7(1,1,1)
$$

Example : Show that the set $\{(1,0,0),(1,1,1)\}$ does not span R^{3}.
Solution : We take an arbitrary vector in R^{3}, say $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$, and we show that it can not be expressed as a linear combination of the vectors in S . For that, we write

$$
\mathrm{c}_{1}(1,0,0)+\mathrm{c}_{2}(1,1,1)=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)
$$

which leads to a system of linear equations : $\mathrm{c}_{1}+\mathrm{c}_{2}=\mathrm{u}_{1}$

$$
\begin{aligned}
& \mathrm{c}_{2}=\mathrm{u}_{2} \\
& \mathrm{c}_{2}=\mathrm{u}_{3}
\end{aligned}
$$

which has no solution since $\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ is a triplet of arbitrary numbers. This completes the verification.

Linear Independence of Vectors : Let $\mathrm{S}=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ be a set of vectors in a vector space V . The vectors in the set S are said to be linearly independent if the equation

$$
\mathrm{c}_{1} \mathbf{u}_{1}+\mathrm{c}_{2} \mathbf{u}_{2}+\ldots \mathrm{c}_{\mathrm{n}} \mathbf{u}_{\mathbf{n}}=\mathbf{0}
$$

is satisfied if only if $\mathrm{c}_{\mathrm{i}}=0(\mathrm{i}=1-\mathrm{n})$, where c_{i} 's are real numbers. On the other hand, if the above equation is satisfied by some nontrivial (nonzero) values of c_{i} 's , then the vectors in the set S would be linearly dependent. We note that for linearly independent case none of the vectors in S can be expressed as a linear combination of the others. An immediate consequence of the above definition is that : any set of vectors containing zero vector is linearly dependent.

Basis of a Vector Space : Let S be a set of vectors in V. Then, we say that the vectors in S form a basis for V if the vectors in $\mathrm{S} \mathbf{i}$) are linearly independent ii) span V .

Example : The set $\mathrm{S}=\{(1,0,0),(1,1,0),(1,1,1)\}$ spans R^{3} and linearly independent; hence it can be used as a basis for R^{3}.

Example : For a space M of 2 x 2 matrices (which is a vector space), the basis set may be chosen as

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

which are independent and span V (you may show these as home exercise).
Example : For a space P_{2} of second order polynomials (which is a vector space) the basis set may be chosen as

$$
S=\left\{1, x, x^{2}\right\}
$$

which are independent and span P_{2} (you may show these as home exercise)
The selection of the basis set for given vector space is not unique; but, the number of the base vectors contained in the set is invariant. For example, for R^{3} the basis set may be chosen as $S=\{(1,0,0),(1,1,0),(1,1,1)\}$ or $S=\{(1,0,0),(0,1,0),(0,0,1)\}$, etc., where we note that each basis set contains 3 base vectors.

Dimension of a Vector Space : The number of base vectors in the basis set of a given vector space V is called dimension of V and designated by "dim(V)". For example, $\operatorname{dim}\left(R^{n}\right)=n$ since R^{n} has " n " base vectors which may be chosen as

$$
\mathbf{e}_{1}=(1,0, \ldots, 0) ; \mathbf{e}_{2}=(0,1,0, . ., 0) ; \ldots ; \mathbf{e}_{\mathbf{n}}=(0, \ldots, 0,1)
$$

The space M_{2} of 2×2 matrices has the dimension of 4 since it has four base vectors. The dimension of P_{2} (which is the space of second order polynomials) is 3 because it has three base vectors.

INNER PRODUCT VECTOR SPACES

In this space, the inner product (\mathbf{u}, \mathbf{v}) of two vectors in R^{n} is defined with the following properties

1) $(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$ (Symmetry).
2) $(\mathbf{c} \mathbf{u}, \mathbf{v})=c(\mathbf{u}, \mathbf{v})$, where c is a constant.
3) $\left(\mathrm{c}_{1} \mathbf{u}_{1}+\mathrm{c}_{2} \mathbf{u}_{2}, \mathbf{v}\right)=\mathrm{c}_{1}\left(\mathbf{u}_{1}, \mathbf{v}\right)+\mathrm{c}_{2}\left(\mathbf{u}_{2}, \mathbf{v}\right)$, where c_{1} and c_{2} are constants. (Linearity)
4) $(\mathbf{u}, \mathbf{u}) \geq 0$, where equality holds if only if $\mathbf{u}=\mathbf{0}$. (Positive-definiteness)

Orthogonality Condition : Two vectors \mathbf{u} and \mathbf{v} are said to be orthogonal if (\mathbf{u}, \mathbf{v}) $=0$. A set of vectors in which each pair is orthogonal is called orthogonal set. An orthogonal set of nonzero vectors is always linearly independent.

Definition of Inner Product in $\mathbf{E}_{\mathbf{n}}$: The inner product of the vectors $\mathbf{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, . ., \mathrm{u}_{\mathrm{n}}\right)$ and $\mathbf{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, . ., \mathrm{v}_{\mathrm{n}}\right)$ in n -dimensional Euclidean space $\left(\mathrm{E}_{\mathrm{n}}\right)$ is defined by

$$
(\mathbf{u}, \mathbf{v})=\mathrm{u}_{1} \mathrm{v}_{1}+\mathrm{u}_{2} \mathrm{v}_{2}+\ldots+\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}
$$

which implies

$$
(\mathbf{u}, \mathbf{u})=\mathbf{u}_{1}^{2}+\mathbf{u}_{2}^{2}+\ldots+\mathbf{u}_{\mathrm{n}}^{2}=|\mathbf{u}|^{2}
$$

or

$$
|\mathbf{u}|=(\mathbf{u}, \mathbf{u})^{1 / 2}=\sqrt{\mathrm{u}_{1}^{2}+\mathrm{u}_{1}^{2}+\ldots .+\mathrm{u}_{\mathrm{n}}^{2}}
$$

which is the length of the vector \mathbf{u} can be used as a norm in E_{n}.
Norm of a Vector : The norm $\|\mathbf{u}\|$ of a vector \mathbf{u} is a nonzero scalar with the properties

1) $\quad\|\mathbf{u}\| \geq 0$ where the equality holds if only if $\mathbf{u}=\mathbf{0}$,
2) $\|\mathbf{c u}\|=|c|\|\mathbf{u}\|$, where c is a constant,
3) $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$.

We can define various types of norms. Among them, the most popular one is p-norm which is defined by

$$
\|\mathbf{u}\|_{\mathrm{p}}=\left(\left|\mathrm{u}_{1}\right|^{\mathrm{p}}+\left|\mathrm{u}_{2}\right|^{\mathrm{p}}+\ldots+\left|\mathrm{u}_{\mathrm{n}}\right|^{\mathrm{p}}\right)^{1 / \mathrm{p}}=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\mathrm{u}_{\mathrm{i}}\right|^{\mathrm{p}}\right)^{1 / \mathrm{p}}
$$

where " p " is a fixed number. In practice, we usually take $\mathrm{p}=1$ or 2 , or we use (as third norm) $\|\mathbf{u}\|_{\infty}$ (called maximum norm, defined below), that is,

$$
\begin{aligned}
& \|\mathbf{u}\|_{1}=\left(\left|u_{1}\right|+\left|\mathrm{u}_{2}\right|+\ldots+\left|\mathrm{u}_{\mathrm{n}}\right|\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\mathrm{u}_{\mathrm{i}}\right| \quad \quad \text { (l } 1 \text {-norm), } \\
& \|\mathbf{u}\|_{2}=\left(\left|\mathrm{u}_{1}\right|^{2}+\left|\mathrm{u}_{2}\right|^{2}+\ldots+\left|\mathrm{u}_{\mathrm{n}}\right|^{2}\right)^{1 / 2}=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\mathrm{u}_{\mathrm{i}}\right|^{2}\right)^{1 / 2} \quad \text { (Euclidean or } \mathrm{l}_{2} \text {-norm), } \\
& \|\mathbf{u}\|_{\infty}=\max _{\mathrm{j}}\left|\mathrm{u}_{\mathrm{j}}\right| \quad \text { (maximum or } \mathrm{l}_{\infty} \text { - norm). }
\end{aligned}
$$

Example : Compute $l_{1}-, l_{2}-$ and l_{∞} - norms of the vector $\mathbf{u}=(2,-3,0,1,-4)$.
Answer : $\|\mathbf{u}\|_{1}=2+3+0+1+4=10 ;\|\mathbf{u}\|_{2}=(4+9+0+1+16)^{1 / 2}=(30)^{1 / 2} ; \quad\|\mathbf{u}\|_{\infty}=4$

INFINITE DIMENSIONAL EUCLIDEAN (FUNCTION) SPACE

Consider a function $f(x)$ given in discrete form .

x	x_{1}	X_{2}	\ldots	x_{n}
f	f_{1}	f_{2}	\ldots	f_{n}

This discrete valued function defines an n-dimensional Euclidean space (E_{n}) with the elements $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ at the data points $x(i=1-n)$, where the inner product of two discrete functions f and g are defined by

$$
(f, g)=f_{1} g_{1}+f_{2} g_{2}+\ldots+f_{n} g_{n}=\sum_{i=1}^{n} f_{i} g_{i} .
$$

Now suppose we squeeze the data points x_{i}; thus, n goes to infinity and "f "becomes continuously defined for all x values. Then, " f " may be considered as defined in infinite dimensional Euclidean space (E_{∞}), where the inner product of two continuous functions $f(x)$ and $g(x)$ is given by

$$
(f, g)=(f, g)=\int_{a}^{b} f g d x
$$

Here, we assume that f and and g are defined in the interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$. We note that the summation symbol appearing in the definition of inner product in E_{n} is replaced by integral in infinite dimensional Euclidean space (E_{∞}).

The inner product in E_{∞} obeys the usual rules :
1)(f,g)=(g,f) (Symmetry)
2) $(\mathrm{cf}, \mathrm{g})=\mathrm{c}(\mathrm{f}, \mathrm{g})$, where c is a constant
3) $\left(c_{1} f_{1}+c_{2} f_{2}, g\right)=c_{1}\left(f_{1}, g\right)+c_{2}\left(f_{2}, g\right)$, where c_{1} and c_{2} are constants. (Linearity)
4) $(f, f)=\int_{a}^{b} f^{2} d x \geq 0$, where equality holds if only if $f=0$. (Positive-definiteness)

The functions f and g would be orthogonal if

$$
(f, g)=\int_{a}^{b} f g d x=0
$$

Example : Consider the space P_{2} of second order polynomials of the form

$$
P_{2}(x)=c_{0}+c_{1} x+c_{2} x^{2}
$$

Choose the basis set as: $\mathrm{S}=\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$. We can express all the second order polynomials as a linear combination of these base functions. The base functions $S=\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$ are defined in E_{∞}; but, the space spanned by $S=\left\{1, x, x^{2}\right\}, P_{2}$, is a subspace of E_{∞}. Note that the subspace P_{2} containing the second order polynomials has the dimension of 3 since the basis set S contains three base functions.

Linear Independence of Functions: Let $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be a set of functions in E_{∞} defined in the interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$. The functions in the set S are said to be linearly independent if the equation

$$
\mathrm{c}_{1} \mathrm{v}_{1}+\mathrm{c}_{2} \mathrm{v}_{2}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}=0
$$

is satisfied if only if $c_{i}=0(i=1-n)$, where c_{i} 's are real numbers. On the other hand, if the above equation is satisfied by some nontrivial (nonzero) values of c_{i} 's , then the functions in the set S would be linearly dependent. We note that for linearly independent case none of the functions in S can be expressed as a linear combination of the others. An immediate consequence of the above definition is that : any set of functions containing zero function is linearly dependent.

A Test for Linear Independence of Functions: The set of functions $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ defined in the interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ would be linearly independent if the Wronskian determinant W defined by

$$
\mathrm{W}=\left[\begin{array}{ccccc}
\mathrm{v}_{1} & \mathrm{v}_{2} & \cdot & \cdot & \mathrm{v}_{\mathrm{n}} \\
\mathrm{v}_{1}^{\prime} & \mathrm{v}_{2}^{\prime} & \cdot & \cdot & \mathrm{v}_{\mathrm{n}}^{\prime} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\mathrm{v}_{1}^{(\mathrm{n}-1)} & \mathrm{v}_{2}^{(\mathrm{n}-1)} & \cdot & . & \mathrm{v}_{\mathrm{n}}^{(\mathrm{n}-1)}
\end{array}\right] \text { where }()^{\prime}=\mathrm{d} / \mathrm{dx} ;()^{\mathbf{k}}=\mathrm{d}^{\mathrm{k}} / \mathrm{dx} \mathrm{x}^{\mathrm{k}}
$$

is not identically equal to zero at all points of the interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$.
Example :Consider the base functions of a second order polynomial : $\left\{1, x, x^{2}\right\}$.We wish to determine whether these base functions are independent or not. For that, we form the Wronskian determinant :

$$
\mathrm{W}=\left[\begin{array}{ccc}
1 & \mathrm{x} & \mathrm{x}^{2} \\
0 & 1 & 2 \mathrm{x} \\
0 & 0 & 2
\end{array}\right]=2 \neq 0 \text { for all } \mathrm{x} \text { values. }
$$

This implies that the functions $\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$ are linearly independent.

