LINEAR VECTOR SPACES

GENERAL DEFINITIONS AND CONSIDERATIONS

We know that a vector \mathbf{u} in E_3 (3D Euclidean space) can be expressed as an ordered triplet of numbers : \mathbf{u} =(u_1 , u_2 , u_3). E_3 is a 3D vector space (\mathbb{R}^3) in which the inner (scalar) product is defined. We now generalize the real vector space to n dimensions and designate it by \mathbb{R}^n . An element \mathbf{u} of \mathbb{R}^n has the form $\mathbf{u} = (u_1, u_2, ..., u_n)$ with the following properties:

- i) If **u** and **v** are any two vectors in \mathbb{R}^n , then $\mathbf{u}+\mathbf{v}$ would be in \mathbb{R}^n ; in other words, \mathbb{R}^n is closed under vector addition. Further, the vector addition obeys the rules :
 - 1) $\mathbf{u}+\mathbf{v} = \mathbf{v}+\mathbf{u}$ for all \mathbf{u} and \mathbf{v} in \mathbb{R}^n
 - 2) $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$ for all \mathbf{u},\mathbf{v} and \mathbf{w} in \mathbb{R}^n
 - 3) there exists a a unique zero vector "**0**" in Rⁿ so that **u+0=0+u=u** for all **u** in Rⁿ
 - 4) for each **u** in Rⁿ there exists a unique vector "-**u**" so that **u**+(-**u**)=(-**u**)+**u**=**0**
- ii) If **u** is any vector in \mathbb{R}^n and c is any real number, then "c**u**" would be in \mathbb{R}^n ; in other words, \mathbb{R}^n is closed under scalar multiplication. Further, scalar multiplication obeys the rules :
 - 1) cu=uc for any u in \mathbb{R}^n and any real number "c"
 - 2) $c(\mathbf{u}+\mathbf{v})=c\mathbf{u}+c\mathbf{v}$ for any \mathbf{u} and \mathbf{v} in \mathbb{R}^n , and any real number "c"
 - 3) (c+d)u=cu+du for any u in \mathbb{R}^n , and any real numbers "c" and "d"
 - 4) (cd)u=c(du) for any u in Rⁿ, and any real numbers "c" and "d"
 - 5) (1) $\mathbf{u}=\mathbf{u}$ and (0) $\mathbf{u}=\mathbf{0}$ for any \mathbf{u} in \mathbb{R}^n

A complex vector space is a collection of elements satisfying the conditions in (i) and (ii) stated above; but, in this case, the multiplication by a complex number is allowed in (ii).

Even though the properties in (i) and (ii) are given to define R^n (n-dimensional real vector space), they also define an abstract vector space (V); in other words, any space with the elements satisfying the conditions in(i) and (ii) is called a vector space.

Example : A space with the elements of the form (a,a^2) is not a vector space because it is not closed under addition. In fact consider two elements, say **A** and **B**, of that space : $\mathbf{A} = (a, a^2)$; $\mathbf{B} = (b, b^2)$

whose addition gives : $\mathbf{A} + \mathbf{B} = (a+b, a^2 + b^2)$ which is not an element of the space under consideration.

Example :Consider the space P_2 of second order polynomials: $P_2(x)=c_0 + c_1*x + c_2 *x^2$ (where c_i are some constants). This space is a vector space since it satisfies all of the conditions in (i) and (ii) [you verify this as home exercise].

Example : The space of (2x2) matrices with the elements of the form : $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

is a vector space because the elements of that space satisfy all of the conditions in (i) and (ii).

Subspace of a Vector Space : Let V be a vector space and W be a subset of V. Then, W would be a subspace of V if only if W is closed under vector addition and scalar multiplication.

We note that not all subsets of a vector space are subspaces. For example, the subset of \mathbb{R}^3 containing all the vectors of the form $(u_1, u_2, 1)$ is not a subspace of \mathbb{R}^3 since it is not closed under vector addition, as well as, under multiplication by scalar. On the other hand, the subset with the elements of the form $(u_1, u_2, 0)$ would be a subpspace of \mathbb{R}^3 [verify this as home exercise].

Linear Combination of Vectors : Let $S = \{u_1, u_2, ..., u_n\}$ be a set of vectors in a vector space V. The vector

 $\mathbf{v}=\mathbf{c}_1 \mathbf{u}_1 + \mathbf{c}_2 \mathbf{u}_2 + \dots \mathbf{c}_n \mathbf{u}_n$ with \mathbf{c}_i 's being real numbers is called a linear combinations of the vectors in S.

Vectors Spanning a Vector Space : Let $S = \{u_1, u_2, ..., u_n\}$ be a set of vectors in a vector space V. The set S spans V if every vector in V can be expressed as a linear combination of the vectors in S. We say that V is spanned by S, and S is the spanning set of V whenever S spans V.

Example : Show that the set $\{(1,0,0), (1,1,0), (1,1,1)\}$ spans \mathbb{R}^3 . Solution : We take an arbitrary vector in \mathbb{R}^3 , say $\mathbf{u}=(u_1, u_2, u_3)$ and we show that it can be expressed as a linear combination of the vectors in S. To this end, we write

$$c_1(1,0,0)+c_2(1,1,0)+c_3(1,1,1) = (u_1, u_2, u_3)$$

which leads to a system of linear equations : $c_1 + c_2 + c_3 = u_1$ $c_1 + c_2 = u_2$

$$c_2 = u_2$$

 $c_3 = u_3$

whose solution gives : $c_1 = u_1 - u_2$; $c_2 = u_2 - u_3$; $c_3 = u_3$. This completes the verification. For example, we can use the above solution for :

$$(-2,5,7) = -7(1,0,0) - 2(1,1,0) + 7(1,1,1)$$

Example : Show that the set $\{(1,0,0), (1,1,1)\}$ does not span R³. Solution : We take an arbitrary vector in R³, say $\mathbf{u}=(u_1, u_2, u_3)$, and we show that it can not be expressed as a linear combination of the vectors in S. For that, we write

$$c_1(1,0,0)+c_2(1,1,1) = (u_1, u_2, u_3)$$

which leads to a system of linear equations : $c_1 + c_2 = u_1$

$$c_2 = u_2$$
$$c_2 = u_3$$

which has no solution since (u_1, u_2, u_3) is a triplet of arbitrary numbers. This completes the verification.

Linear Independence of Vectors : Let $S = \{u_1, u_2, ..., u_n\}$ be a set of vectors in a vector space V. The vectors in the set S are said to be linearly independent if the equation $c_1 u_1 + c_2 u_2 + ... c_n u_n = 0$

is satisfied if only if $c_i = 0$ (i= 1-n), where c_i 's are real numbers. On the other hand, if the above equation is satisfied by some nontrivial (nonzero) values of c_i 's, then the vectors in the set S would be linearly dependent. We note that for linearly independent case none of the vectors in S can be expressed as a linear combination of the others. An immediate consequence of the above definition is that : any set of vectors containing zero vector is linearly dependent.

Basis of a Vector Space : Let S be a set of vectors in V. Then, we say that the vectors in S form a basis for V if the vectors in S i) are linearly independent ii) span V.

Example : The set $S = \{(1,0,0), (1,1,0), (1,1,1)\}$ spans R^3 and linearly independent; hence it can be used as a basis for R^3 .

Example : For a space M of $2x^2$ matrices (which is a vector space), the basis set may be chosen as

1	0	0	1	0	0	[0	0
0	0],	0	0]'	1	0]	0	1

which are independent and span V (you may show these as home exercise).

Example : For a space P_2 of second order polynomials (which is a vector space) the basis set may be chosen as

$$S = \{1, x, x^2\}$$

which are independent and span P₂ (you may show these as home exercise)

The selection of the basis set for given vector space is not unique; but, the number of the base vectors contained in the set is invariant. For example, for \mathbb{R}^3 the basis set may be chosen as $S=\{(1,0,0), (1,1,0), (1,1,1)\}$ or $S=\{(1,0,0), (0,1,0), (0,0,1)\}$, etc., where we note that each basis set contains 3 base vectors.

Dimension of a Vector Space : The number of base vectors in the basis set of a given vector space V is called dimension of V and designated by "dim(V)". For example, $\dim(\mathbb{R}^n)$ =n since \mathbb{R}^n has "n" base vectors which may be chosen as

 $\mathbf{e_1} = (1,0,\ldots,0)$; $\mathbf{e_2} = (0,1,0,\ldots,0)$;; $\mathbf{e_n} = (0,\ldots,0,1)$

The space M_2 of 2x2 matrices has the dimension of 4 since it has four base vectors. The dimension of P_2 (which is the space of second order polynomials) is 3 because it has three base vectors.

INNER PRODUCT VECTOR SPACES

In this space, the inner product (\mathbf{u}, \mathbf{v}) of two vectors in \mathbb{R}^n is defined with the following properties

- 1) $(\mathbf{u},\mathbf{v})=(\mathbf{v},\mathbf{u})$ (Symmetry).
- 2) (cu,v)=c(u,v), where c is a constant.
- 3) $(c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2, \mathbf{v}) = c_1 (\mathbf{u}_1, \mathbf{v}) + c_2 (\mathbf{u}_2, \mathbf{v})$, where c_1 and c_2 are constants. (Linearity)
- 4) $(\mathbf{u},\mathbf{u}) \ge 0$, where equality holds if only if $\mathbf{u}=\mathbf{0}$. (Positive-definiteness)

Orthogonality Condition : Two vectors \mathbf{u} and \mathbf{v} are said to be orthogonal if $(\mathbf{u},\mathbf{v})=0$. A set of vectors in which each pair is orthogonal is called orthogonal set. An orthogonal set of nonzero vectors is always linearly independent.

Definition of Inner Product in E_n: The inner product of the vectors $\mathbf{u}=(u_1, u_2, ..., u_n)$ and $\mathbf{v}=(v_1, v_2, ..., v_n)$ in n-dimensional Euclidean space (E_n) is defined by

$$(\mathbf{u},\mathbf{v}) = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$

which implies

$$(\mathbf{u},\mathbf{u})=u_1^2+u_2^2+\ldots+u_n^2=|\mathbf{u}|^2$$

or

$$|\mathbf{u}| = (\mathbf{u},\mathbf{u})^{1/2} = \sqrt{u_1^2 + u_1^2 + \dots + u_n^2}$$

which is the length of the vector \mathbf{u} can be used as a **norm** in E_n .

Norm of a Vector : The norm $\|\mathbf{u}\|$ of a vector \mathbf{u} is a nonzero scalar with the properties

1) $\|\mathbf{u}\| \ge 0$ where the equality holds if only if $\mathbf{u}=\mathbf{0}$, 2) $\|c\mathbf{u}\| = |c| \|\mathbf{u}\|$, where c is a constant, 3) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

We can define various types of norms. Among them, the most popular one is p-norm which is defined by

$$\|\mathbf{u}\|_{p} = (|\mathbf{u}_{1}|^{p} + |\mathbf{u}_{2}|^{p} + \dots + |\mathbf{u}_{n}|^{p})^{1/p} = \left(\sum_{i=1}^{n} |\mathbf{u}_{i}|^{p}\right)^{1/p}$$

where "p" is a fixed number. In practice, we usually take p=1 or 2, or we use (as third norm) $\|\mathbf{u}\|_{\infty}$ (called maximum norm, defined below), that is,

$$\begin{aligned} \|\mathbf{u}\|_{1} &= (|\mathbf{u}_{1}| + |\mathbf{u}_{2}| + \dots + |\mathbf{u}_{n}|) = \sum_{i=1}^{n} |\mathbf{u}_{i}| \qquad (l_{1}\text{-norm}), \\ \|\mathbf{u}\|_{2} &= (|\mathbf{u}_{1}|^{2} + |\mathbf{u}_{2}|^{2} + \dots + |\mathbf{u}_{n}|^{2})^{1/2} = \left(\sum_{i=1}^{n} |\mathbf{u}_{i}|^{2}\right)^{1/2} \text{ (Euclidean or } l_{2}\text{-norm}), \\ \|\mathbf{u}\|_{\infty} &= \max_{i} |\mathbf{u}_{j}| \qquad (\text{maximum or } 1_{\infty} \text{-norm}). \end{aligned}$$

Example : Compute l_1 - , l_2 - and l_{∞} - norms of the vector $\mathbf{u}=(2,-3,0,1,-4)$.

Answer:
$$\|\mathbf{u}\|_{1} = 2+3+0+1+4 = 10$$
; $\|\mathbf{u}\|_{2} = (4+9+0+1+16)^{1/2} = (30)^{1/2}$; $\|\mathbf{u}\|_{\infty} = 4$

INFINITE DIMENSIONAL EUCLIDEAN (FUNCTION) SPACE

Consider a function f(x) given in discrete form .

This discrete valued function defines an n-dimensional Euclidean space (E_n) with the elements $f=(f_1, f_2, ..., f_n)$ at the data points x (i=1-n), where the inner product of two discrete functions f and g are defined by

$$(f,g)=f_1 g_1 + f_2 g_2 + \ldots + f_n g_n = \sum_{i=1}^n f_i g_i$$

Now suppose we squeeze the data points x_i ; thus, n goes to infinity and "f "becomes continuously defined for all x values. Then, "f" may be considered as defined in infinite dimensional Euclidean space (E_{∞}), where the inner product of two continuous functions f(x) and g(x) is given by

$$(\mathbf{f},\mathbf{g}) = (\mathbf{f},\mathbf{g}) = \int_{a}^{b} \mathbf{f} \ \mathbf{g} \ \mathbf{dx}$$

Here, we assume that f and and g are defined in the interval $a \le x \le b$. We note that the summation symbol appearing in the definition of inner product in E_n is replaced by integral in infinite dimensional Euclidean space (E_{∞}) .

The inner product in E_{∞} obeys the usual rules :

1)(f,g)=(g,f) (Symmetry) 2) (cf,g)=c(f,g), where c is a constant 3) (c₁ f₁+c₂ f₂, g)=c₁ (f₁,g)+c₂ (f₂,g), where c₁ and c₂ are constants. (Linearity) 4) (f,f) = $\int_{a}^{b} f^{2} dx \ge 0$, where equality holds if only if f=0. (Positive-definiteness)

The functions f and g would be orthogonal if

$$(f,g) = \int_{a}^{b} f g dx = 0$$

Example : Consider the space P₂ of second order polynomials of the form

$$P_2(x) = c_0 + c_1 x + c_2 x^2$$

Choose the basis set as : $S=\{1, x, x^2\}$. We can express all the second order polynomials as a linear combination of these base functions. The base functions $S=\{1, x, x^2\}$ are defined in E_{∞} ; but, the space spanned by $S=\{1, x, x^2\}$, P_2 , is a subspace of E_{∞} . Note that the subspace P_2 containing the second order polynomials has the dimension of 3 since the basis set S contains three base functions.

Linear Independence of Functions : Let $S = \{v_1, v_2, ..., v_n\}$ be a set of functions in E_{∞} defined in the interval $a \le x \le b$. The functions in the set S are said to be linearly independent if the equation

$$c_1 v_1 + c_2 v_2 + \ldots + c_n v_n = 0$$

is satisfied if only if $c_i = 0$ (i= 1-n), where c_i 's are real numbers. On the other hand, if the above equation is satisfied by some nontrivial (nonzero) values of c_i 's, then the functions in the set S would be linearly dependent. We note that for linearly independent case none of the functions in S can be expressed as a linear combination of the others. An immediate consequence of the above definition is that : any set of functions containing zero function is linearly dependent.

A Test for Linear Independence of Functions : The set of functions $S=\{v_1, v_2, ..., v_n\}$ defined in the interval $a \le x \le b$ would be linearly independent if the Wronskian determinant W defined by

$$W = \begin{bmatrix} v_1 & v_2 & \dots & v_n \\ v_1' & v_2' & \dots & v_n' \\ \vdots & \vdots & \ddots & \vdots \\ v_1^{(n-1)} & v_2^{(n-1)} & \dots & v_n^{(n-1)} \end{bmatrix} \text{ where } ()^{k} = d^{k}/dx^{k}$$

is not identically equal to zero at all points of the interval $a \le x \le b$.

Example :Consider the base functions of a second order polynomial : $\{1, x, x^2\}$. We wish to determine whether these base functions are independent or not. For that, we form the Wronskian determinant :

$$W = \begin{bmatrix} 1 & x & x^2 \\ 0 & 1 & 2x \\ 0 & 0 & 2 \end{bmatrix} = 2 \neq 0 \text{ for all x values.}$$

This implies that the functions $\{1, x, x^2\}$ are linearly independent.