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Abstract: In this paper, a mixed formulation frame finite element with semi-rigid connections 

is developed. Consistent mass matrix of the element is obtained such that determination of 

vibration frequencies of members with varying geometry and material distribution as well as 

the presence of semi-rigid connections at any section on the element is accurately captured 

without the need to specify displacement shapes. An accurate shear correction coefficient for 

wide flange sections is taken into account in order to get closer match with exact solutions. 

Numerical examples on a portal frame and a multi-story steel moment resisting frame verify 

the accuracy of proposed element with and without semi-rigid connections. 

1. Introduction 

Semi-rigidity at connection regions of steel structures greatly influences the vibration charac-

teristics of steel moment resisting framed structures. Finite element models should address 

modelling of the mass and stiffness matrices for both beam and column members in order to 

accurately capture transverse shear deformations and rotary inertia along a member’s length, 

as well as the partial fixity introduced by the presence of these connections. Researchers have 

studied dynamic behavior of steel framed structures and suggested to consider the effect of 

semi-rigid connections in the last two decades. Chui and Chan [1] and Nader and Astaneh-Asl 

[2] conducted tests on flexible jointed steel frames accompanied with numerical analyses, and 

found out the importance of taking into account joint flexibility in structural models. Besides 

consideration of semi-rigidity at connection region, it is also important to take into account 

possible inelastic behavior and nonlinear geometric effects on frame members [3-5] in carry-

ing out dynamic analysis. The literature contains significant amount of research work on the 

investigation of the dynamic behavior of steel framed structures with semi-rigid connections 
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through the use of finite element method [6-10]. Available design codes also try to provide 

the influence of semi-rigid response for steel structures under dynamic actions, and research 

studies try to evaluate the code suggestions on this front. In one of such studies, So-

phianapoulos [11] compared Eurocode 3 approach with closed form solutions, where the re-

sults from both approaches showed that in the fundamental modes of vibration responses are 

very close to each other; however, in the higher modes, the influence of the flexible joints be-

came apparent and results differed from each other.  

The amount of the studies on trying to get better predictions on capturing vibration character-

istics of steel framed structures with semi-rigid connections clearly reflects the importance of 

coming up with more accurate and robust modeling approaches. To this end, a mixed formu-

lation frame finite element with semi-rigid connections is developed in this study, where the 

element formulation bases on the use of three-field Hu-Washizu-Barr principle. Consistent 

mass matrix of the element is obtained such that determination of vibration frequencies of 

members with varying geometry and material distribution as well as the presence of semi-

rigid connections at any section on the element is accurately captured without any need for 

specification of different displacement shape functions for each individual case. The element 

response does not necessitate further discretization due to the presence of semi-rigid connec-

tions. An accurate shear correction coefficient for wide flange sections is taken into account in 

order to get closer match with exact solutions. A commercial program, SAP2000 [12], is used 

to validate the results of the proposed model and the previous benchmark solutions in [9].  

2. Frame Element Formulation 

2.1 Kinematic Relations 

Displacements on a material point on the section of a beam that deforms in xy-plane can be 

obtained by calculating Timoshenko beam theory as follows; 
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where ux(x,y) and uy(x,y) are the displacements in x and y directions, respectively of any point 

in the section. u(x) is the displacement of the point (x,0) along x-axis. v(x) is the transverse 

deflections of the point (x,0) from x-axis in y direction. (x) is the small rotation of the beam 

cross section around z-axis.  

The non-zero strain components ε  include the normal strain in the x direction and shear strain 

with xy component, where these are calculated from section deformations as follows; 
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where ( )xe  is the section deformation vector given as follows; 
T
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e                                                             (3) 

In Equation (3), a(x) is the axial strain of the reference axis, (x) is the shear deformation 

along y-axis and  is the curvature about z-axis. Section deformations can be easily calculated 

from section reference displacements as clearly visible from a one to one comparison of the 

terms of Equation (2). Furthermore, section compatibility matrix, as(y,z) introduced in Equa-

tion (2) is written as follows; 
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2.2 Basic System without Rigid Body Modes and Force Interpolation Functions 

Element formulation is proposed in xy-plane, where the formulation considers two end nodes 

and relies on a transformation from complete system to basic system. In the whole structure, 

the element has 3 degrees of freedom (dof) per node, resulting in 6 dofs, where the nodes are 

placed at element ends. The complete system is proposed such that the axis of the element is 

aligned with horizontal x-axis. The basic system is prescribed for the purpose of removing 

rigid body modes of motion, and the basic system is chosen as the cantilever beam as shown 

in Figure 1, where the fixed and free ends are the left and right ends, respectively. The trans-

formation matrix, a for an element with length L is used to relate element end forces in com-

plete system to basic element forces as follows; 
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Fig. 1: Cantilever basic system forces and deformations 

 

It is also possible to relate basic element deformation vector v to displacements in complete 

system by separating 3 rigid body modes and keeping only the basic deformation modes for 

the element. By this way, it is feasible to derive flexibility matrix that would have been im-

possible to get in the complete system because of the singularity caused by rigid body modes. 

Basic element deformations v can be calculated from nodal displacements u in complete sys-

tem as follows; 

 v au                                                                                      (6) 

Basic element forces at free end, q are shown in Figure 1 and given in Equation (5). These 

forces can be related to internal section forces, ( )xs  by using the force interpolation matrix 

( , )x Lb  for the cantilever beam configuration as follows;  
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By using Equation (7), it is possible to attain exact equilibrium between the forces at free end 

of the element and forces at any section that is x units away from the fixed end. Section forces 

are axial force ( )N x , shear force in y direction ( )V x , and moment about z-axis ( )M x . In 

above equation  xs p  is the particular solution for uniformly distributed loads in the axial and 

transverse directions, i.e. wx and wy, respectively. By the way, with this approach, it is easy to 

calculate the particular solution under arbitrary inter element loads that are concentrated or 

distributed. 



4 The International Colloquium on Stability and Ductility of Steel Structures, Timisoara, Romania 

 

 

 

2.3 Variational Base and Finite Element Formulation of the Element 

Variational form of the element is written by considering independent element nodal dis-

placements u, element basic forces q, and section deformations e by using three-fields Hu-

Washizu functional and implemented as part of beam finite elements by Taylor et al. [13] and 

Saritas and Filippou [14]. Extension to dynamic case is achieved through introduction of iner-

tial forces mu  acting at nodes by considering D’Alembert’s principle to get the following 

variational form of the element 
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Above equation can also be obtained by considering the general Hu-Washizu variational form 

with extension to dynamic case by Barr [15]. Equation (8) should hold for arbitraryu , q  

ande , thus the following three equations should be satisfied in order for the Hu-Washizu-

Barr variational to be zero.  
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Equation (9) is the equation of motion that holds for linear or nonlinear material response, and 

this equation can be collected for each element to get structure’s equation of motion. A nu-

merical time integration scheme can be employed to get a solution. Consequence of viscous 

damping can be simply achieved by adding cu  to the left hand side of the equation, where c 

is the damping matrix. It is also possible to determine resisting forces p not only in terms of 

displacements u but also as a function of velocities u  through the use of a material model that 

considers time-dependent effects, such as viscoelastic or viscoplastic material models. 

For linear elastic material response, section deformations can be calculated as e=ks
-1
ŝ to ob-

tain the section deformations from section forces through the use of section stiffness matrix 

ks. Substitution of section deformations e to Equation (10) gives: 
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In above equation f is the flexibility matrix of the element in the basic system. fs is the section 

flexibility matrix that can be calculated from the inversion of the section stiffness matrix ks. 

Further substitution of above equation for linear elastic response in Equation (9) results in 
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where k is the 6×6 element stiffness matrix in the complete system. At this point in the ele-

ment formulation, presence of semi-rigid connections will be introduced through the follow-

ing extended version of above equation for the calculation of element end deformations: 
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The first integral along the length of the frame element can be numerically calculated by using 

a quadrature rule to capture spread of inelastic behavior and nSC is the total number of semi-

rigid connections discreetly located along element length; SC is the vector of semi-rigid con-

nection deformations. Introduction of semi-rigid connections along element length in Figure 1 
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does not alter the force field under small deformations. Element flexibility matrix is similarly 

discretized as follows:  

     T T
ConFr Con ,

1
ame Frame ( ) ( ) ; and ; where
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As a remark, Equations (10) and (11) are related to the element state determination, i.e. these 

equations can be solved independent of Equation (9), and then the solution can be condensed 

out into Equation (9) such that the equations of motion can be assembled for all elements. 

This process was demonstrated above for the linear elastic case. In general, state determina-

tion of the element requires an iterative solution in the case of nonlinear behavior, where 

Equations (9) to (11) are needed to be solved. Detailed derivation of this element and its vali-

dation towards carrying out nonlinear static analysis of steel framed structures with semi-rigid 

connections was published in Saritas and Koseoglu [16]. 

2.4 Section Response 

Section response can be obtained by the basic assumption that plane sections before defor-

mation remain plane after deformation along the length of the beam by the use of following 

section compatibility matrix as as given in Equation (2), where the section compatibility ma-

trix now contains the shear correction factor s as follows 
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Shear correction factor s is taken as the inverse of the form factor suggested by Charney et 

al. [17] for an I-section: 
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The section forces are obtained by integration of the stresses that satisfy the material constitu-

tive relations ( )σ σ ε  according to  
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The derivative of section forces from (18) with respect to the section deformations results in 

the section tangent stiffness matrix 
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The material tangent modulus km is obtained from the stress-strain relation according to 

km=∂σ(ε)/∂ε. Gauss-quadrature, the midpoint or the trapezoidal rule can be used for the nu-

merical evaluation of the integrals in (18) and (19).  

2.5 Force Based Consistent Mass Matrix 

The derivation of the consistent mass matrix requires the determination of the section mass 

matrix, where the mass is considered like a distributed load along the length of the beam in 

cantilever basic system. The section mass matrix is easily computed by following equation 

through the use of section compatibility matrix as given in Equation(4): 

 
T( ) ( , ) ;s s s

A

x x y dA m a a                                                               (20) 

Mass matrix of the force-based element, which will be used in Equation (9), is written in a 

6×6 dimension by the method discussed in depth by [18], i.e. in the complete system with 3 

degrees of freedom per node, as follows:  
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where the components of element mass matrix are calculated from sub-matrices  
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In above equations, element flexibility matrix f is obtained as given in Equation (12). The par-

tial flexibility matrix fp is calculated as follows: 
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3. Numerical Examples 

The first example is a portal frame retrieved from [9], where semi-rigid connections are de-

fined at both ends of the beams in this structure. British UB254x146x37 section is defined to 

the beam and UC203x203x60 sections are defined for the columns. The length of the beam is 

2.9 m and the height of the columns is 3.0 m (see Figure 2). The results are compared with the 

SAP2000 analyses results for 1 and 32 elements of each member of the portal frame. This 

comparison is conducted to verify the accuracy of the SAP2000 model with increased number 

of the elements. Since SAP2000 uses lumped mass approach, increasing mesh size tends to 

give a closer match with consistent mass matrix results as evident in Figure 2.  

 

  
Fig. 2: Portal Frame from the study of [9] and  

Fundamental Natural Frequency versus Joint Stiffness Ratio for Portal Frame 
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The second example is a 3 bay and 6 stories steel frame with European sections HEB260 for 

columns and IPE300 for beams as given in [9]. The length of the beams is 6.0 m and the 

height of the columns is 3.75 m. The results of the proposed model are compared with 

SAP2000 models and results from the study of [9].  On the contrary to the former example, 

SAP2000 model is prepared with four elements for each member. Since the structural system 

is a much larger one compared to the previous example, lumped mass approach presents bet-

ter convergence with 4 elements per member for SAP2000 as compared to the results by 

ABAQUS model from [9] (see Fig. 3); however, the results of SAP2000 could not perfectly 

capture the fundamental mode of vibration due to the deficiency of SAP2000 in capturing an 

accurate shear correction factor for these IPE sections. It is apparent from below figure that 

proposed model showed very close results with ABAQUS by the use of single element dis-

cretization per member.   

   

 
Fig. 3: Fundamental Natural Frequency versus Joint Stiffness Ratio  

for 3 Bays 6 Stories Steel Framed Structure 

4. Conclusions 

The proposed model introduces consistent mass and stiffness matrices for a frame member in 

the presence of semi-rigid connections without the need to further discretize the member into 

more elements, and this approach provides simpler solution and modeling strategy towards 

analysis of steel framed structures with semi-rigid connections. Validation studies clearly 

showed the robustness of the proposed model compared to other finite element programs 

widely used in research and practice.  
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