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Abstract 
This paper presents a beam finite element for the simulation of the monotonic and cyclic response of RC 
structural members under the interaction of flexure, axial force and shear. The proposed beam element follows 
the assumptions of the Timoshenko shear beam theory with a three-field Hu-Washizu variational formulation for 
the derivation of the element response. The nonlinear response of the element is obtained through section 
integration of nonlinear material response. A 3d plastic damage model for cyclic analysis of concrete is 
implemented with the general closest point projection algorithm. Concrete confinement effects are included by 
satisfaction of transverse equilibrium. The tensile and compressive response of the concrete model is related to 
the fracture energy, thus ensuring objectivity of numerical results. In the presence of reinforcing steel the 
fracture energy should be adjusted according to criteria in modern design codes. 
The proposed beam element is validated by comparing the numerical response with experimental measurements 
of the monotonic and cyclic behavior of different type of specimens: shear deficient columns and beam, squat 
and slender shear walls. These correlation studies confirm the promise of the proposed approach. 

1 Introduction 
Extensive research on concrete material development and its application to the nonlinear analysis of RC 
structures has been undertaken in the last 40 years. For structural analysis in professional practice, particularly, 
in performance-based earthquake engineering, current studies focus on acurrate beam models, because the 
response of entire structures with 3d or even 2d solid finite elements is prohibitively expensive. Force-based 
beam elements have proven superior to displacement-based elements in the context of Euler-Bernoulli beam 
theory (Neuenhofer and Filippou [1]). Petrangeli, et al. [2] proposed a force-based beam element under the 
assumptions of the Timoshenko beam for the analysis of slender bridge piers that were flexurally dominant, but 
eventually failed in shear.  
This paper formulates a beam element based on a three-field Hu-Washizu variational form (Taylor, et al. [3]), 
which exhibits the same characteristics as force-based formulations, while meeting the requirements of a more 
general variational framework. The nonlinear response of the element derives from the integration of nonlinear 
material response over the cross section. Small deformation is adopted, but large displacements are accounted for 
during transformation of the element response to the global reference system according to the corotational 
formulation. The material model is based on a 3d concrete plastic damage model (Lee and Fenves [4]) that 
accounts for cyclic strain histories. The effect of transverse strain on the concrete material response is included 
with the satisfaction of transverse force equilibrium. The numerical implementation of the material model makes 
use of the general closest point projection algorithm allowing for flexible incorporation within a library of plastic 
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constitutive models in a general purpose computing environment. The tensile and compressive response of the 
concrete model is related to the fracture energy, thus ensuring objectivity of numerical results. In the presence of 
reinforcing steel the fracture energy can be adjusted according to criteria in modern design codes. 

2 Finite Element Formulation 

2.1 Beam Element 
A beam element with a three-field Hu-Washizu functional was used for metalic shear yielding members in 
Saritas and Filippou [5]. We follow the same work for the beam finite element formulation. The three-field Hu-
Washizu functional is expressed as  
 ( )T

HW ext( , , ) ( ) d dW
Ω Ω

Π = Ω + − Ω +∫ ∫ uσ ε u ε σ ε ε Π  (1) 

( )W ε is the strain energy function,  denotes the strains derived from displacement compatibility, and uε extΠ is 
the potential energy of the external loading due to body forces, as well as displacement and traction boundary 
conditions. In the functional the domain of the element is denoted by Ω , the traction boundaries are denoted by 

, and the displacement boundaries by . tΓ uΓ

2.1.1 Kinematic Approximations 
Limiting ourselves to the planar case, we base the displacement field  in (1) on the assumptions of the 

Timoshenko beam theory, , with u(x) the axial displacement 
of the beam axis, 

u

[T T
x y( , ) ( , ) ( ) ( ) ( )u x y u x y u x y x w xθ⎡ ⎤= = −⎣ ⎦u ]

( )xθ  the rotation of the beam cross section, and w(x) the transverse displacement of the beam 
axis. The compatible strains for the displacement field are obtained by differentiation:  

. The three-field variational form offers flexibility in selecting 
strain fields that are independent from the displacement compatible fields. We denote these as 

( ) ( ) and ( ) ( )u u
xx xyu x y x x w xε θ γ θ′ ′ ′= − = − +

( ) ( ) and ( , ) ( )xx a xyx y x y z xε ε κ γ φ γ= − = , where ( )a xε is the axial deformation, ( )xκ  is the curvature, and 
( )xγ is the shear distortion along the beam axis. The variation of the shear strain field over the cross section is 

described by interpolation function ( , )y zφ , which is derived by satisfying boundary conditions under 
elastostatic conditions with proper tractions on the surface of the beam. 

2.1.2 Force Interpolation Functions 
Taking the variation of the three-field functional in (1), and introducing the strain fields, we obtain a reduced 
variational form. Integration by parts of all terms with derivatives in the displacement fields reveals the suitable 
interpolation functions for the section forces (generalized stress terms). Moreover, this approach results in the 
elimination of the need for a displacement field approximation along the beam. A detailed presentation of the 
process is given elsewhere (Taylor, et al. [3]). The force interpolation functions are p( ) ( ) ( )x x= +s b q s x

]
, where 

[ T( ) ( ) ( ) ( )x N x M x V x=s  is the vector of section force resultants or generalized stresses,  
represents the independent or basic element forces, and 

[ ]T
1 2 3q q q=q

( )xb  is a matrix of force interpolation functions. 

2.1.3 Solution of Beam Equations  
After substitution of the previous matrix expressions into (1), a reduced variational form is obtained. The 
evaluation of the integrals along the beam axis at discrete integration points gives the matrix form of the 
variational functional. Subsequently, the equations are linearized at the current material state. There are three 
fields requiring iteration and updating: the end displacements u , the section deformations e  at each integration 
point on the beam, and the basic element forces q . A thorough discussion of possible solution strategies is 
available elsewhere (Taylor, et al. [3]) .  
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2.1.4 Section Model 
The section forces  and tangent section stiffness are obtained by numerical integration of nonlinear material 
response over the cross section. The section model obeys the kinematics in part 2.1.1. The strains are evaluated 
at each integration point, and the material model returns the corresponding stress and stiffness tensor. 

s

2.2 Material Model 

A plasticity model with small strain theory can be written as e p= +ε ε ε , ,  and 

. Here ,  and 

e=σ Eε ( , )p λ=ε m σ κ

( , )λ=κ p σ κ ε eε pε  are the total, elastic and plastic strain tensors respectively, σ  is the stress 
tensor,  is the elastic stiffness tensor,  is the flow vector,  are the plastic moduli, and κ  is the set of 
internal variables. In a damage model, the effective stress tensor 

E m p
σ  is defined in terms of a damage parameter D, 

such that (1 )D= −σ σ . The plastic multiplier λ  is determined from the Kuhn-Tucker loading/unloading 

conditions by replacing σ  with σ : ( , ) 0F ≤σ κ ,  and 0λ ≥ ( , ) 0F λ =σ κ , where F is the yield function defining 
admissable stress states.  

2.2.1 Constitutive Relations 
In the work by Lee and Fenves [4], two damage variables, one for tensile damage Dt , and other for compressive 
damage Dc are defined independently. The model has two internal damage variables,  for tension 
and compression. The evolution of internal variables is defined in the principal stress space as 

[ T,t cκ κ=κ ]

 ˆ

ˆ( ) ( ) 0 0ˆ ˆ ˆ ˆ( , ), ( , ) ( , ), ( , )
ˆ0 0 (1 ( )) ( )

t t t

c c c

r f g

r f g

κ
λ

κ

⎡ ⎤
= = ⋅∇ φ = ⎢ ⎥

−⎢ ⎥⎣ ⎦
σ

σ
κ p σ κ p h σ κ σ κ h σ κ

σ
 (2) 

A non-associative flow rule is neseccary to control the dilatancy in modeling concrete. A Drucker-Prager type 
function is used for the plastic potential function ( , )φ σ κ  in (2), while the yield function ( , )F σ κ  is the 
Barcelona model which is a combined geometric shape from two different Drucker-Prager type functions. For a 
more through description of the model and its parameters see Lee and Fenves [4]. In (2) gN is the specific 
fracture energy normalized by the characteristic length lN where { },N t c∈ , leading to N N Ng G l= . In order to 
maintain objectivity in the results, lN  should be objective. For the case of the beam element formulation, the 
characteristic length is selected equal to the integration weight of the corresponding section. Fracture energy in 
tension can be adjusted according to criteria available in design codes, as suggested by Feenstra and deBorst [6].  

2.2.2 Integration of Damage Evolution Equations 
The time integration of the relations with a backward Euler method results in the following residual expressions 

1 1 1 1( , ) Trial
n n n nλ+ + + += + − =σR σ Em σ κ σ 0 , 1 1 1( , )n n n nλ+ + += + − =κR κ Em σ κ κ 0  and 1 1( , ) 0n nFλ∆ + += =R σ κ . For 

the solution of these nonlinear equations, linearization is used with a iterative scheme that makes use of 
substepping (Perez-Foguet, et al. [7]). It is important to emphasize that the damage correction step is independent 
of the plastic correction steps. 

2.2.3 Enforcement of Beam Dimensions from 3d Material Model 
The 3d material model needs to satisfy the stress constraints of the beam problem. In the case with no transverse 
reinforcing steel, the plane stress conditions hold, i.e. 0y zσ = σ = . For the case with transverse reinforcement 
transverse equilibrium gives y vy vyfρσ = −  and z vz vzfρσ = − , where the transverse reinforcing ratio in the y and 
z directions is vyρ  and vzρ  and the steel stress is vyf  and , respectively. After linearization the normal strain 
in the y and z direction is obtained by iteration. This process accounts for the concrete confinement effect.  

vzf

3 Application 
The slender, shear deficient column tested by Lynn, et al. [8] demonstrates the capability of the beam 
formulation and the material model. The axial load on the column was 35% of the axial load capacity. The 
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tensile and compressive fracture energies are selected as 70 N/m and 15000 N/m, respectively. The column is 
analyzed with one element and variable number of integration points (IP) along the beam. 10 IP are used through 
the section with the midpoint integration rule. The beam element does not suffer from shear locking. The results 
in Fig. 1 show convergence upon mesh refinement with objectivity of the response under softening material 
conditions and good agreement with the measured cyclic envelope of the hysteretic column response.  At least 4 
IP are required for accuracy. Further refinement does not lead to significant improvement. Further calibration of 
material parameters is necessary and a more extensive set of validation studies is in progress. 
 
 

 
Figure 1 Load – Deformation Response 

 
Figure 2 Damage Disttribution 

 

4 Conclusion 
The proposed beam element with the 3d concrete plastic damage model shows considerable promise. The overall 
response of various RC member types is captured well, while equally satisfactory agreement is obtained with 
local response measures, such as measured internal strain distributions and visible damage. Thorough 
identification of material parameters and validation studies with various concrete specimens are in progress.  
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