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Abstract 
 

In this paper, a force-based three-dimensional frame finite element formulation with spread of inelasticity 

through the element and localized nonlinear semi-rigid connections is developed. The proposed model utilizes 

Euler-Bernoulli beam theory assumptions, and adopts fiber discretization of monitored sections along element 

length and section depth for the spread of inelasticity in order to capture axial force and biaxial bending moment 

interaction. Defining any type of semi-rigid either linear or nonlinear connection behavior along element length 

does not necessitate any increase in number of degrees of freedom. The element is modelled with option of 

capturing nonlinear geometric effects. The proposed element is designated for the biased analysis of steel 

structures, since considering the presence of beam to column semi-rigid connections through analyses provides 

true behavior. The formulated element can also consider the presence of any type of connection that may be 

present in a steel structure; such as beam to column, column base, brace end connections. Specific to this study, 

moment-rotation response of beam to column connections is implemented for both the strong axis and weak axis 

bending directions. Numerical examples are considered to verify the results obtained from the developed finite 

element models with regards to other available structural analysis programs. 

 

 

Keywords: Steel structures; Semi-rigid; Three dimensional; Finite element formulation; Nonlinear structural 

analysis; Beam to column connections 
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1 Introduction 
 

Phenomenologically there are 2 types of connections on the purposes of design for steel structures. Beam column 

connections are considered as either simple or moment type connections. However, beam column connections 

tend to behave with relative rotation together with moment transfer. This type of connection is called semi-rigid 

connection. In order to represent the actual behavior of steel structures many researchers are prone to take the 

effect of the semi-rigid connections on the behaviors of the structures. (Chui & Chan, 1997) and (Nader & 

Astaneh-Asl, 1996) applied laboratory studies on the semi-rigidly jointed steel frames accompanied with 

numerical analyses. Studies revealed a good match with the laboratory test results and the numerical studies 

when introducing the semi-rigid joints. Studies of (Saritas & Koseoglu, 2015) revealed the effects of semi-rigid 

connections under cycling loading and studies verified with experimental results for two dimensional steel semi-

rigid framed structures. The dynamic behavior of steel structures is dependent on the definition of flexible joints 

on the system. The study of (Ozel & Saritas, 2015) showed the necessity of defining flexible joints for accurate 

modelling of vibration characteristics on steel framed structures. Again in dynamic manner, three dimensional 

(3D) studies of (Nguyen & Kim, 2013) revealed the significance of semi-rigid joints on steel framed structures 

under cyclic loading.  

 

In this study, 3D steel frames are modelled with semi-rigid joints and the effects are discussed. In order to carry 

out an accurate analysis of steel framed structures, proposed element with semi-rigid connections is compared 

with (Frank McKenna, Fenves, & Scott, 2015) force based element, which by the way does not contain semi-

rigid connections in its formulation, but require introduction of additional nodes and spring elements for 

capturing the presence of semi-rigid connections at the expense of increased matrix sizes, thus storage in 

computers. Although not discussed in current paper, there are also differences between proposed element and 

OpenSees’s force based element with regards to mass matrix implementation. OpenSees model utilizes lumped 

mass approach; however, proposed model utilizes force-based consistent mass matrix based as proposed by 

(Soydas & Saritas, 2016. In Press).  

 

2 Frame Element Formulation 

 

2.1 Kinematic Relations 

 
Displacements on a material point on the section of a beam that deforms in xyz-plane can be obtained by 

calculating Timoshenko beam theory as follows; 
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where ux(x,y,z), uy(x,y,z) and uz(x,y,z) are the displacements in x, y and z directions, respectively of any point in 

the section. u(x) is the displacement of the point (x,0) along x-axis. v(x) and w(x) are the transverse deflections 

of the point (x,0) from x-axis in y and z direction. x(x), y(x) and z(x)  are the small rotation of the beam cross 

section around x,y and z-axis.  

 

The non-zero strain components ε  include the normal strain in the x direction and shear strain with xyz 

component, where these are calculated from section deformations as follows; 
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where ( )xe  is the section deformation vector given as follows; 

 
T
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In Equation (3), ( )a x  is the axial strain of the reference axis, ( )x is torsional strain, ( )y x  and ( )z x are the 

shear deformations about y and z-axis, respectively and, ( )y x  and ( )z x  are the curvature about y and z-axis, 

respectively. Section deformations can be easily calculated from section reference displacements as clearly 

visible from a one to one comparison of the terms of Equation (2). Furthermore, section compatibility matrix, 

s ( , )y za  introduced in Equation (2) is written as follows; 

 

s

1 0 0 0

( , ) 0 0 0 1 0

0 0 0 0 1

y z

y z z

y
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Beam kinematics is presented for the case of Timohensko beam theory in above derivation; however, 

verification studies are only pursued for the case where only normal stress-strain behavior is nonlinear, and the 

shear strains due to shear forces vanish by considering curvatures are related to the double derivative of 

transverse displacements in Equation (2).  

 

 

2.2 Basic System without Rigid Body Modes and Force Interpolation Functions 

 
Element formulation is proposed in xyz-plane, where the formulation considers two end nodes and relies on a 

transformation from complete system to basic system. In the whole structure, the element has 6 degrees of 

freedom (dof) per node, resulting in 12 dofs, where the nodes are placed at element ends. The complete system is 

proposed such that the axis of the element is aligned with horizontal x-axis. The basic system is chosen as shown 

in Figure 1, where left hand side of the system only allows rotations in y and z direction, and the right hand side 

allows only displacement in x direction and rotations in x, y and z direction.. The transformation matrix, a for an 

element with length L is used to relate element end forces in complete system to basic element forces as follows; 
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Figure 1. Basic system forces and deformations 

 

Basic element deformations v can be calculated from nodal displacements u in complete system as follows; 

 

v au     (6) 

 

Basic element forces at free end, q are shown in Figure 1 and given in Equation (5). These forces can be related 

to internal section forces, ( )xs  by using the force interpolation matrix ( , )x Lb  for the cantilever beam 

configuration as follows;  
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By using Equation (7), it is possible to attain exact equilibrium between the forces at free end of the element and 

forces at any section that is x units away from the fixed end. Section forces are axial force ( )N x , shear force in y 

and z direction ( )yV x , ( )zV x and moment about y and z-axis ( )yM x , ( )zM x .  

 

 

2.3 Variational Base and Finite Element Formulation of the Element 

 
Variational form of the element is written by considering independent element nodal displacements u, element 

basic forces q, and section deformations e by using three-fields Hu-Washizu functional and implemented as part 

of beam finite elements by (Taylor, Filippou, Saritas, & Auricchio, 2003) and (Saritas & Filippou, 2009).  
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Above equation can also be obtained by considering the general Hu-Washizu variational form. Equation (8) 

should hold for arbitrary u , q  and e , thus the following three equations should be satisfied in order for the 

Hu-Washizu variational to be zero.  
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For linear elastic material response, section deformations can be calculated as e=ks
-1ŝ to obtain the section 

deformations from section forces through the use of section stiffness matrix ks. Substitution of section 

deformations e to Equation (9) gives: 

 

T
g
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In above equation f is the flexibility matrix of the element in the basic system. fs is the section flexibility matrix 

that can be calculated from the inversion of the section stiffness matrix ks. Further substitution of above equation 

for linear elastic response results in 

 
T 1; whereapp
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where k is the 12×12 element stiffness matrix in the complete system. At this point in the element formulation, 

presence of semi-rigid connections will be introduced through the following extended version of above equation 

for the calculation of element end deformations: 
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The first integral along the length of the frame element can be numerically calculated by using a quadrature rule 

to capture spread of inelastic behavior and nSC is the total number of semi-rigid connections discreetly located 

along element length; SC is the vector of semi-rigid connection deformations. Introduction of semi-rigid 

connections along element length in Figure 1 does not alter the force field under small deformations. Element 

flexibility matrix is similarly discretized as follows:  
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As a remark, Equations (9) and (10) are related to the element state determination, i.e. these equations can be 

solved independent of Equation (8), and then the solution can be condensed out into Equation (8) such that the 

equations of motion can be assembled for all elements. This process was demonstrated above for the linear 

elastic case. In general, state determination of the element requires an iterative solution in the case of nonlinear 

behavior, where Equations (8) to (10) are needed to be solved. This solution requires also the calculation of 

element flexibility matrix f under nonlinear response, where taking derivative of element deformations v in 

Equation (9) with respect to element forces q results into the same flexibility integration expression given in 

Equation (11), but this time the section stiffness will be nonlinear, as well. 

 

  

2.4 Section Response 

 
Section response can be obtained by the basic assumption that plane sections before deformation remain plane 

after deformation along the length of the beam by the use of following section compatibility matrix as as given in 

Equation (2) 
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Shear correction factor s is taken as the inverse of the form factor suggested by (Charney, Iyer, & Spears, 2005) 

for I-section about the major bending axis: 

 

1/ ; where =0.85+2.32
f f
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The section forces are obtained by integration of the stresses that satisfy the material constitutive relations 

( )σ σ ε  according to  
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The derivative of section forces with respect to the section deformations results in the section tangent stiffness 

matrix 
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The material tangent modulus km is obtained from the stress-strain relation according to km=∂σ(ε)/∂ε. Gauss-

quadrature, the midpoint or the trapezoidal rule can be used for the numerical evaluation of the integrals in (17) 

and (18). While Gauss-quadrature gives better results for smooth strain distributions and stress-strain relations, 

the midpoint rule is preferable for strain distributions and stress-strain relations with discontinuous slope. 

 

 

3 Numerical Examples 
 

A three dimensional portal frame model is built on OpenSees software and in Matlab by the use of proposed 

model (Figure 2). Model height is 3 m and bays in each direction are 6 m. Each node has six degrees of freedom 

and all beam and column elements have linear coordinate transformation. In other words, second order P-Delta 

effects are ignored.  

 

HEB180 steel section for all columns and IPE240 steel section for all beams are defined with and without the 

presence of semi-rigid connections. Elasticity modulus, Poisson’s ratio are taken as 210 GPa and 0.3, 

respectively. For semi-rigid case, connection stiffness ratio is taken as λ=2, 11 and 20, where λ is the ratio of 

connection stiffness to flexural rigidity EI/L of beam. It is worth to mention that λ=2 is close to pin/shear 

connection case, while λ=20 is close to rigid/moment connection case. Bilinear steel material with strain-

hardening ratio of 1 ∗ 10−6 is used to define material for both beams and columns and they are modelled as a 

nonlinear force beam-column element. The frame is loaded by 200 mm displacement in the strong axes of the 

columns and results are presented for verification of the response of proposed beam element. 

 

 
 

Figure 2. 3D Portal Frame Model 

 

 

To model a semi-rigid steel beam-column connection in OpenSees model, the node that connects beam to 

column is duplicated and a zero-length rotational spring is added between the nodes. This results in an addition 

of 50% more nodes for this simple structure, where this number will be larger and thus be a more significant 

issue as the structure size grows. All the degrees of freedom except the rotational degree of freedom about which 

the zero-length rotational spring is presumed to rotate are constrained in OpenSees model, i.e. master and slave 

nodes are considered through a penalty formulation to enforce the equivalence of all dofs except than the dof at 

which semi-rigid response is introduced. It is worth to mention that the proposed model doesn’t necessitate this 

kind of action while defining the semi-rigidity at the ends of the beams and there won’t be any dof increase in 

the system.   
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Figure 3. Nonlinear material and linear elastic connection response 

 

 

First, the 3D portal frame is modelled with rigid connections to control the frame element formulation with 

OpenSees model and proposed model. From Figure 3, both models show a perfect match since they both utilize 

force method formulation. Semi-rigid connections are added to the system with elastic and bilinear behavior in 

different cases. In Figure 3, the comparison between models with elastic semi-rigid connections is represented 

and models present perfect match. In Figure 4, semi-rigid connections with bilinear moment-rotation behavior 

are considered, and perfect match with OpenSees is observed in all simulations.  

 

 
 

Figure 4. Nonlinear material and nonlinear connection response 

 

 

The effects of the semi-rigid connections with changing connection stiffness ratio (λ) presented the difference for 

the 3D systems in the Figure 5, clearly. The yield of the connections decreased the dissipation of the energy of 

the system. 
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Figure 5. Influence of connection stiffness on nonlinear response of 3D portal frame structure 

  

 

 4 Conclusion 
 

The proposed frame element model is compared with model created in OpenSees Software in this study. 3D 

portal frame is assessed with flexible connections introduced at the end of the beams. Both the proposed model 

and OpenSees model are created with force based element formulation. Differences between the two models are 

due to easier implementation of semi-rigid connections in element response for the proposed model, while 

OpenSees model needs extra nodes, dofs, introduction of spring elements, as well as master and slave node 

constraints with penalty formulation. Proposed model provides accurate and robust solutions as can be seen from 

the results provided in this study. The proposed model currently utilizes Euler Bernoulli beam element 

formulation; however, for the future research, Timoshenko Beam will be implemented with accurate shear 

correction factors and torsional responses. Future work will also include nonlinear static and dynamic analyses 

of 3D frames with semi-rigid connections.    
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