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Abstract. Vibration characteristics of steel framed structures are affected by the presence of semi-rigid 

connections. In this study, a mixed formulation frame finite element is developed from force method, 

where the variational form of the element bases on the use of three-fields Hu-Washizu-Barr principle. 

Consistent mass matrix of the element is obtained such that determination of vibration frequencies of 

members with varying geometry and material distribution as well as the presence of semi-rigid 

connections at any section on the element is accurately captured without any need for specification of 

different displacement shape functions for each individual case. The element response does not 

necessitate further discretization due to the presence of semi-rigid connections. Benchmark numerical 

examples for a steel I-beam verifies the accuracy of proposed element with and without semi-rigid 

connections. 

1 INTRODUCTION 

Researchers have studied the effects of dynamic behaviors of steel structures in the last decades and 

found out that the effect of the semi-rigid connections on the behavior of steel structures is especially 

important under dynamic loadings. Better match with the laboratory test results by [1] and [2] were 

observed when introducing the flexible joint effects in the numerical studies. Analysis studies by [3], [4], 

and [5] provided the inclusion of connection stiffness in the dynamic analysis of steel structures, where 

the effects of the semi-rigid connections has been observed to have  deteriorating role on the systems. 

Sophianapoulos [6] compared vibration properties for some benchmark examples with Eurocode 3 

approach for semi-rigid steel frame structures. Results showed that for the fundamental modes, the results 

of closed form solutions are very close to Eurocode 3; however, for the higher modes, the influence of the 

flexible joints resulted in differences between the two.  

In order to carry out an accurate dynamic analysis of steel framed structures, vibration characteristics 

of typical steel beams with I-section containing semi-rigid connections should be studied. For this 

purpose, a mixed formulation frame finite element is developed from three fields Hu-Washizu-Barr 

functional through the use of force-based interpolation functions. The proposed approach allows 

determination of vibration frequencies of members with altering geometry and material distribution with 

semi-rigid connections placed at any location on the element without further specification of different 

displacement shape functions. Vibration frequencies and mode shapes for both the rigid and semi-rigid 

connection cases are verified through numerical examples solved with proposed approach and in ANSYS 

[7] and SAP2000 [8]. 
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2 FRAME ELEMENT FORMULATION 

2.1 Kinematic Relations 

Displacements on a material point on the section of a beam that deforms in xy-plane can be obtained 

by calculating Timoshenko beam theory as follows; 

 
( , ) ( ) ( )

( , ) ( )

x

y

u x y u x y x

u x y v x




   
   

  
 (1) 

where ux(x,y) and uy(x,y) are the displacements in x and y directions, respectively of any point in the 

section. u(x) is the displacement of the point (x,0) along x-axis. v(x) is the transverse deflections of the 

point (x,0) from x-axis in y direction. (x) is the small rotation of the beam cross section around z-axis. 

The non-zero strain components ε  include the normal strain in the x direction and shear strain with xy 

component, where these are calculated from section deformations as follows; 
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where ( )xe  is the section deformation vector given as follows; 
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In Equation (3), a(x) is the axial strain of the reference axis, (x) is the shear deformation along y-axis 

and  is the curvature about z-axis. Section deformations can be easily calculated from section reference 

displacements as clearly visible from a one to one comparison of the terms of Equation (2). Furthermore, 

section compatibility matrix, as(y,z) introduced in Equation (2) is written as follows; 
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2.2 Basic System without Rigid Body Modes and Force Interpolation Functions 

Element formulation considers two end nodes and relies on a transformation from complete system to 

basic system. The basic system shown in Figure 1 is prescribed for the purpose of removing rigid body 

modes of motion. 

 

Figure 1. Cantilever basic system forces and deformations 

The transformation matrix, a for an element with length L is used to relate element end forces in complete 

system to basic element forces as follows; 
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It is also possible to relate basic element deformation vector v to displacements in complete system by 

separating 3 rigid body modes and keeping only the basic deformation modes for the element. By this 
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way, it is feasible to derive flexibility matrix that would have been impossible to get in the complete 

system because of the singularity caused by rigid body modes. Basic element deformations v can be 

calculated from nodal displacements u in complete system as follows; 

 v au  (6) 

Basic element forces at free end, q are shown in Figure 1 and given in Equation (5). These forces can 

be related to internal section forces, ( )xs  by using the force interpolation matrix ( , )x Lb  for the 

cantilever beam configuration as follows; 
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By using Equation (7), it is possible to attain exact equilibrium between the forces at free end of the 

element and forces at any section that is x units away from the fixed end. Section forces are axial 

force ( )N x , shear force in y direction ( )V x , and moment about z-axis ( )M x . In above equation  xs
p

 

is the particular solution for uniformly distributed loads in the axial and transverse directions, i.e. wx and 

wy, respectively. By the way, with this approach, it is easy to calculate the particular solution under 

arbitrary inter element loads that are concentrated or distributed. 

2.3 Variational Base and Finite Element Formulation of the Element 

Variational form of the element is written by using three-fields Hu-Washizu functional and 

implemented as part of beam finite elements by Taylor et al. [9] and Saritas and Filippou [10]. Extension 

to dynamic case is achieved through introduction of inertial forces mu  acting at nodes by considering 

D’Alembert’s principle to get the following variational form of the element 
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where independent fields of the functional are element nodal displacements u, element basic forces q, and 

section deformations e. Above equation can also be obtained by considering the general Hu-Washizu 

variational form with extension to dynamic case by Barr [11]. Equation (8) should hold for arbitrary u , 

q  and e , thus the following three equations should be satisfied in order for the Hu-Washizu-Barr 

variational to be zero.  
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Equation (9) is the equation of motion that holds for linear or nonlinear material response, and this 

equation can be collected for each element to get structure’s equation of motion. A numerical time 

integration scheme can be employed to get a solution. Consequence of viscous damping can be simply 
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achieved by adding cu  to the left hand side of the equation, where c is the damping matrix. It is also 

possible to determine resisting forces p not only in terms of displacements u but also as a function of 

velocities u  through the use of a material model that considers time-dependent effects, such as 

viscoelastic or viscoplastic material models. 

For linear elastic material response, section deformations can be calculated as e=ks
-1ŝ to obtain the 

section deformations from section forces through the use of section stiffness matrix ks. Substitution of 

section deformations e to Equation (10) gives: 
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In above equation f is the flexibility matrix of the element in the basic system. fs is the section 

flexibility matrix that can be calculated from the inversion of the section stiffness matrix ks. Further 

substitution of above equation for linear elastic response in Equation (9) results in 
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where k is the 6×6 element stiffness matrix in the complete system. At this point in the element 

formulation, presence of semi-rigid connections will be introduced through the following extended 

version of above equation for the calculation of element end deformations: 
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The first integral along the length of the frame element can be numerically calculated by using a 

quadrature rule to capture spread of inelastic behavior and nSC is the total number of semi-rigid 

connections discreetly located along element length; SC is the vector of semi-rigid connection 

deformations. Introduction of semi-rigid connections along element length in Figure 1 does not alter the 

force field under small deformations. Element flexibility matrix is similarly discretized as follows:  
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As a remark, Equations (10) and (11) are related to the element state determination, i.e. these 

equations can be solved independent of Equation (9), and then the solution can be condensed out into the 

first equation such that the equations of motion can be assembled for all elements. This process was 

demonstrated above for the linear elastic case. In general, state determination of the element requires an 

iterative solution in the case of nonlinear behavior, where Equations (9) to (11) are needed to be solved. 

This solution requires also the calculation of element flexibility matrix f under nonlinear response, where 

taking derivative of element deformations v in Equation (10) with respect to element forces q results into 

the same flexibility integration expression given in Equation (15), but this time the section stiffness will 

be nonlinear, as well.  

2.4 Section Response 

Section response can be obtained by the basic assumption that plane sections before deformation 

remain plane after deformation along the length of the beam by the use of following section compatibility 

matrix as as given in Equation (2), where the section compatibility matrix now contains the shear 

correction factor s as follows 
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Shear correction factor s is taken as the inverse of the form factor suggested by Charney et al. [12] 

for I-section: 
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The section forces are obtained by integration of the stresses that satisfy the material constitutive relations 

( )σ σ ε  according to  
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The derivative of section forces from (18) with respect to the section deformations results in the 

section tangent stiffness matrix 
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The material tangent modulus km is obtained from the stress-strain relation according to km=∂σ(ε)/∂ε. 

Gauss-quadrature, the midpoint or the trapezoidal rule can be used for the numerical evaluation of the 

integrals in (18) and (19). While Gauss-quadrature gives better results for smooth strain distributions and 

stress-strain relations, the midpoint rule is preferable for strain distributions and stress-strain relations 

with discontinuous slope. 

2.5 Force-Based Consistent Mass Matrix 

The derivation of the consistent mass matrix requires the determination of the section mass matrix, 

where the mass is considered like a distributed load along the length of the beam in cantilever basic 

system. The section mass matrix is easily computed by following equation through the use of section 

compatibility matrix as given in Equation (4): 
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Mass matrix of the force-based element, which will be used in Equation (9), is written by the method 

provided by [13] and [14] as follows:  
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where the components of element mass matrix are calculated from sub-matrices  
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In above equations, element flexibility matrix f is obtained as given in Equation (15). The partial 

flexibility matrix fp is calculated as follows: 
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where above equation should be supplemented by the presence of localized connection flexibility as done 

in Equation (15) for the element flexibility matrix.   

3 NUMERICAL EXAMPLES 

A cantilever beam with IPE270 section is considered with and without the presence of semi-rigid 

connection at fixed support. Length to depth (L/d) ratio of the beam is taken as 10, 5 and 2. Elasticity 

modulus, Poisson’s ratio and density of steel are 200 GPa, 0.3 and 7832 kg/m3, respectively. Connection 

stiffness ratio λ for semi-rigid case is taken as 2, 11 and 20, where λ is the ratio of connection stiffness to 

flexural rigidity EI/L of beam. Proposed model is first assessed for the rigid connection case with ANSYS 

and SAP2000, and then semi-rigid connection case results are compared with SAP2000.  

3.1 Cantilever Beam with Rigid Connection 

Modal analyses results obtained from ANSYS for the cantilever beam with rigid connection are given 

in Table 1. Analyses in ANSYS is carried out by the use of 3d brick finite elements with a fine mesh 

discretization, and the first two bending modes and the first axial mode are reported only for comparison 

purposes with frame finite element solution. 

Table 1. ANSYS Results for Cantilever I-Beam with Rigid Connection 

L/d 1st Bending (Hz) 2nd Bending (Hz) 1st Axial (Hz) 

10 42.154 227.13 468.35 

5 155.66 649.25 937.13 

2 671.28 - 2358.7 
 

Modal analyses results obtained by the use of frame finite elements in SAP2000 and through the use 

of proposed element are given in Table 2. Results obtained with the use of 1 element in SAP2000 gave 

gross errors, since SAP2000 employs lumped mass matrix; thus, only 4 and 32 element results are given 

for SAP2000. On the other hand, the proposed element employs a force-based consistent mass matrix and 

furthermore accurately calculates the stiffness matrix of a beam with I-section with the shear correction 

factor suggested by Charney [12]. For this reason, 1, 4 and 32 element results are provided for the 

proposed element solutions. It is evident that the proposed element closely estimates the first bending and 

axial modes for L/d=10 and 5. It is furthermore observed that the use of 4 elements gives close results for 
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the proposed element with ANSYS results for given vibration modes for all aspect ratios while the same 

cannot be said at all for SAP2000 solutions. 

Table 2. SAP2000 and Proposed Model Results for Cantilever I-Beam with Rigid Connection 

L/d Mode Type 
SAP 2000 Proposed Model 

Nel =4 Nel =32 Nel =1 Nel = 4 Nel = 32 

10 

1st Bending (Hz) 41.3104 42.4160 42.4325 42.1005 42.0848 

2nd Bending (Hz) 213.8580 232.2880 388.6018 229.2061 226.9499 

1st Axial (Hz) 464.9001 467.9457 515.9358 470.9140 467.9490 

5 

1st Bending (Hz) 154.2258 157.8283 157.9986 155.5062 155.3225 

2nd Bending (Hz) 643.5006 692.5208 1031.8716 671.8748 659.1511 

1st Axial (Hz) 930.2326 935.4537 1202.4073 941.8281 935.8980 

2 

1st Bending (Hz) 692.5208 702.2472 718.4257 686.5626 684.1043 

2nd Bending (Hz) 2136.7521 2277.9043 2579.6789 2080.1213 2030.6245 

1st Axial (Hz) 2325.5814 2341.9204 3118.2153 2354.5701 2339.7449 

3.2 Cantilever Beam with Semi-Rigid Connection 

Modal analyses results obtained for the cantilever beam with semi-rigid connection at base for 

SAP2000 and proposed element solutions are given in Tables 3 and 4, where B1, B2 and A1 represent 1st 

and 2nd bending and 1st axial modes, and =2 and 20 are the lower and upper ranges to describe a beam to 

column connection to fall into semi-rigid connection classification. The error of the results obtained for 

the proposed element with single element discretization is more significant as the connection stiffness 

becomes 2. Comparison of 32 element results of SAP2000 and proposed model solutions for both the 

long and short beam cases demonstrate that the results from proposed approach provide the accurate and 

reliable vibration frequencies since the same level of difference was also present in Table 2 for the rigid 

case results. 

Table 3. SAP2000 Results for Cantilever I-Beam with Semi-Rigid Connection 

 L/d 10 5 2 

Nel Mode  =2 =11 =20 =2 =11 =20 =2 =11 =20 

4 

 

B1(Hz) 24.29 35.68 37.92 94.66 135.34 142.94 508.13 644.33 664.89 

B2(Hz) 178.86 197.90 203.54 596.66 624.61 631.71 2136.75 2136.75 2136.75 

A1(Hz) 444.44 459.14 464.25 930.23 930.23 930.23 2325.58 2325.58 2325.58 

32 

 

B1(Hz) 24.75 36.52 38.86 96.39 138.22 146.11 515.20 653.17 673.86 

B2(Hz) 192.75 214.04 220.46 640.21 671.14 678.89 2277.90 2277.90 2277.90 

A1(Hz) 467.95 467.95 467.95 935.45 935.45 935.45 2341.92 2341.92 2341.92 

Table 4. Proposed Model Results for Cantilever I-Beam with Semi-Rigid Connection 

 L/d 10 5 2 

Nel Mode =2 =11 =20 =2 =11 =20 =2 =11 =20 

1 

 

B1(Hz) 41.43 42.05 42.19 153.81 156.51 157.09 699.33 712.83 715.15 

B2(Hz) 352.54 373.32 378.90 1031.87 1031.87 1031.87 2579.68 2579.68 2579.68 

A1(Hz) 515.94 515.94 515.94 1149.86 1182.72 1190.30 3137.40 3123.86 3121.53 

4 

 

B1(Hz) 25.10 36.54 38.76 97.03 137.22 144.62 505.54 639.38 659.39 

B2(Hz) 199.00 215.61 220.42 637.96 658.35 663.43 2062.07 2074.72 2076.94 

A1(Hz) 470.91 470.91 470.91 941.83 941.83 941.83 2354.57 2354.57 2354.57 

32 

 

B1(Hz) 24.99 36.49 38.72 96.51 136.91 144.36 501.29 636.50 656.70 

B2(Hz) 189.09 209.88 215.95 610.68 640.00 647.23 2020.76 2027.91 2029.05 

A1(Hz) 467.95 467.95 467.95 935.90 935.90 935.90 2339.75 2339.75 2339.75 
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4 CONCLUSION 

The proposed element is able to determine the vibration characteristics for an I-beam with great 

accuracy when compared with ANSYS results, while the same cannot be said for SAP2000 solutions. 

Proposed element accurately captures stiffness and mass distribution without the need for the description 

of the displacement field. Accuracy obtained from proposed approach is furthermore enhanced by the use 

of an appropriate shear correction factor for I-section steel beams. The results obtained from proposed 

element with semi-rigid connection also show that the element is able to consider the inclusion of semi-

rigid connection behavior accurately.  
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