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Abstract. A mixed formulation frame finite element with internal semi-rigid connections is presented 

for the nonlinear analysis of steel structures. Proposed element provides accurate responses for 

spread of inelasticity along element length by monitoring the nonlinear responses of several cross-

sections, where spread of inelasticity over each section is captured with fiber discretization. Each 

material point on the section considers inelastic coupling between normal stress and shear stress. The 

formulation of the element also considers the presence of linear or nonlinear behavior of semi-rigid 

connection behavior without additional nodes and degrees of freedom, thus robustness of element 

response is maintained. Formulation of the element can include the presence of axial and shear 

deformations and rotation on localized connection region. For an accurate representation of cyclic 

behavior of connection regions, a multi-linear model is considered that accounts for strength and 

stiffness degradation as well as pinching of the hysteresis curves. Nonlinear response of the proposed 

element is assessed by considering steel framed structures with semi-rigid connections.  

1 INTRODUCTION 

Several experimental and analytical modeling of semi-rigid connections have been 

performed by researchers, and implementation of an accurate behavior of semi-rigid 

connections into structural analyses is still an ongoing research issue. One of the most cited 

and early study on the development and use of frame finite elements with consideration of 

semi-rigid connections was presented by Lui and Chen [1]. Plasticity was assumed to exist 

only as a lumped value at the plastic hinge location and the remaining part of the member was 

linear elastic; thus in order to capture yielding along beam length, beam span had to be 

discretized into further elements. For the moment rotation curve of the connection an 

exponential function was used, and in this regards the constitutive model was limited to 

monotonic loading. In the study of Sekulovic and Salatic [2] the effect of the connection 

flexibility on the behavior of the structure under static loading was examined, where a 

numerical model was used that takes both nonlinear behavior of the connection and geometric 

nonlinearity of the structure into consideration. This beam model had similar assumptions 

with the study by [1]. 

Valipour and Bradford [3] proposed a frame element that considers spread of inelasticity 

along element length and nonlinear semi-rigid behavior at element ends. The element has 

been developed based on force formulation using total secant stiffness approach. The work in 

the paper did not present comparisons with experimental data, and more importantly, the 

nonlinear response of the connection did not take into account stiffness and strength 

degradation and pinching effects since the researchers opted to use both a bilinear model with 
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kinematic hardening and alternatively the Ramberg–Osgood model. Nonlinear geometric 

effects were not also taken into account in the formulation. 

Nguyen and Kim [4] proposed a force-based frame element that considers spread of 

inelasticity along element length and section depth, where the element did not include semi-

rigid connections inside element response, but considered separate zero-length spring 

elements in order to take into account connection response in analysis at the expense of 

increased nodes and degrees of freedom. By the use of displacements calculated through 

stability analysis, nonlinear geometric effects were taken into account in element response. 

Verification studies in the paper only focused on monotonic responses of steel frames with 

semi-rigid connections. In describing connection behavior, power and exponential models 

were employed. 

In this paper, a macro frame element model is developed for analysis of steel framed 

structures with spread of inelastic behavior along element length and incorporating nonlinear 

semi-rigid connections. The element is formulated through force-based approach and coded 

such that it can include any number of semi-rigid connections at arbitrary locations along an 

element without any need of introducing nodes and degrees of freedom. For representation of 

nonlinear behavior of semi-rigid connections, moment-rotation type mathematical models 

proposed in the literature for beam to column connections have been used for comparison of 

the element response via benchmark results. For a true representation of the hysteretic energy 

dissipation characteristic of a semi-rigid beam to column connection, a moment-rotation 

model incorporating pinching, damage, the possibility of residual moment capacity, 

degradation of stiffness is implemented. The response of developed moment-rotation model is 

calibrated and verified via experimental data of various semi-rigid connection types from 

literature. The macro element model is used in conjunction with corotational formulation for 

the capture of nonlinear geometric effects and to demonstrate the importance of modeling the 

hysteretic behavior of semi-rigid connections in the nonlinear analysis of steel framed 

structures.  

2 FRAME ELEMENT FORMULATION WITH CONNECTORS 

2.1 Derivation of element response 

The element is composed of continuous element portions with discontinuities arising due 

to the presence of zero-length rotational springs. Kinematics of the continuous portion of the 

frame element follows Timoshenko Beam Theory assumptions. As part of this theory, 

element response is due to the presence of normal and shear stresses along element length. 

Nonlinear response of the continuous portion of the element is aggregated from the 

monitoring of the responses of several control sections along element length, and furthermore 

at each section, the response is assembled through fiber discretization of the section.  

The formulation of the element starts with the calculation of axial force N(x), bending 

moment M(x) and shear force V(x) from basic element forces q1, q2 and q3 (Figure 1). In the 

absence of inter element loads, these internal forces can be simply calculated with statics 

knowledge as follows:  
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Above equation can be extended to the presence of distributed uniform element loads wx and 

wy applied in the axial and transverse directions, respectively, and can be written as: 
 

     x x x s b q s p  (2) 

 
where q is the vector of basic element forces, b(x) represents the force-interpolation functions 

and can be regarded as an equilibrium transformation between section forces s(x) and basic 

forces q, and the particular solution sp(x) is due to uniform loads wx and wy, where these are 

all given as:  
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Principal of virtual forces necessitate the equality between virtual element end forces q

multiplied with real element deformations v to be calculated from the integration of virtual 

section forces s multiplied with real section deformations e. Introduction of the section 

interpolation functions from above equations and with the fact that virtual forces are arbitrary, 

element end deformations v are calculated from the section deformations as follows  

 

     
TT ; and a

L

x x dx    v b e e  (4) 

 
where e is the vector of section deformations. 
 

 

Figure 1: Basic Forces and Deformation for Beam Element 
 

Element flexibility matrix f can be calculated from above equation by considering partial 

differentiation of v with respect to element end forces q: 
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where fs is the section flexibility matrix that can be calculated from the inversion of the 

section stiffness matrix ks. 

At this point in the element formulation, presence of semi-rigid connections will be 

introduced through the following extended version of above equation for the calculation of 

element end deformations: 
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The first integral along the length of the frame element can be numerically calculated by using 

a quadrature rule to capture spread of inelastic behavior andnSC is the total number of semi-

rigid connections present along the element that is discreetly located at any distance along the 

length of the element; 
T

axial shear
SC SC SC SC

   
 

Δ  is the vector of semi-rigid connection 

deformations composed of axial deformation axial

SC , rotation SC  and shear sliding shear

SC  of a 

connection. Introduction of semi-rigid connections along element length in Figure 1 does not 

alter the force field under small deformations, thus above equalities in Equations (1) to (6) are 

not affected by this operation.  

Element flexibility matrix is similarly discretized as follows:  
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It is worth to point out the variational base of the nonlinear force-based elements is proven 

by Saritas and Soydas [5] to be obtained through the use of three-fields Hu-Washizu 

functional.  

The use of Gauss-quadrature or Gauss-Lobatto quadrature integration points with number 

of integration points nIP selected as 5 results in a sufficiently accurate nonlinear behavior for 

the continuous part [6]. In order to capture plastification along section depth, fiber 

discretization is employed with various integration rules, where midpoint and trapezoidal rule 

typically gives accurate results for attaining nonlinear response of section integrations. In this 

regards, it is worth to note that the frame element model presented in this paper can also 

successfully capture both flexure yielding in long beams and shear-yielding in short steel 

beams, i.e. shear-links [7]. This is achieved through the coupling of normal and shear stresses 

at material points along the depth of a section of the beam [8] as presented next. Instead of 

fiber discretization of the section, an alternative approach is to use stress resultants plasticity 

models to capture the interaction between section forces. Advantages and disadvantages of 

using such an approach over fiber discretization is presented in [9].  

With regards to the nonlinear behavior of semi-rigid connections, the current study focuses 

on only the presence of uncoupled and nonlinear behavior for the rotational component of 

semi-rigid connections, thus axial and shear behaviors are obtained separately and 

furthermore assumed as linear elastic and infinitely strong. These assumptions provide 

accurate representation of the behavior of partially restrained connections for horizontal load 

carrying members such as beams. In the case of columns where base plate connections 

provide significant axial and rotation interactions, response of connections should consider 

axial force and bending moment coupling in nonlinear response.  

2.2 Section response 

Section response can be obtained by the basic assumption that plane sections before 

deformation remain plane after deformation along the length of the beam by the use of 

following section compatibility matrix sa  as given 
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and e is the section deformation vector given in Equation (4) and s  is the shear correction 

factor taken as the inverse of the form factor suggested by Charney et al.[10] for wide-flange 

sections: 
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The section forces are obtained by integration of the stresses that satisfy the material 

constitutive relations ( )σ σ ε  according to  
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The derivative of section forces from (11) with respect to the section deformations results in 

the section tangent stiffness matrix 
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The material tangent modulus km is obtained from the stress-strain relation according to 

 

 m

( )




σ ε
k

ε
 (13) 

 
Gauss-quadrature, the midpoint or the trapezoidal rule can be used for the numerical 

evaluation of the integrals in (11) and (12). While Gauss-quadrature gives better results for 

smooth strain distributions and stress-strain relations, the midpoint rule is preferable for strain 

distributions and stress-strain relations with discontinuous slope. 

3 SEMI-RIGID CONNECTION RESPONSE 

3.1 Proposed connection model 

The proposed model in this paper is a multi-linear model similar to the original work by 

Ibarra et al. [11]. However, in terms of theoretical development and implementation of the 

proposed model in this paper, the trilinear model that is already present in Fedeaslab finite 

element program [12] was originally considered for the theoretical development and 

implementation purposes in Matlab, and this trilinear model is also available in OpenSees 

finite element program [13] with function name uniaxialMaterial Hysteretic. The proposed 

model in this paper proposes a quadra-linear response that is extension from the trilinear 

response, and it is actually similar to the original model by [11] and with its implemented 

version in OpenSees with function name uniaxialMaterial Pinching4. It is worth to point out 

that these models were not specifically proposed for describing the behavior of semi-rigid 

connections, and they are mostly used in conjunction with describing localized plastic hinge 
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responses in reinforced concrete members. Since the proposed model in this paper is similar 

with those models, only a summary of the proposed model is considered to be sufficient, 

where differences between both models are mentioned in the following presentation and in 

depth discussion is available in the thesis of Koseoglu [14]. While using a multi-linear model, 

initial stiffness, yielding and ultimate moments can be taken from either test data or estimated 

through a theory as discussed in the literature review on monotonic models. The unloading 

stiffness in the proposed model has been taken as equal to initial stiffness which is reasonable 

when considering experiments.  

Quadra-linear model is implemented in order to better capture pinching and residual 

moment capacities. Pinching can be caused by several factors in a semi-rigid connection, such 

as permanent deformation in yielded materials that is unrecoverable under load reversals and 

due to slippage. Such an action is possible for example with the permanent deformation of 

bolt holes from circle to ellipse shape or by permanent deformations in connecting parts 

(flanges, webs) between column and beam, causing separation between parts.  

In the experiments in which pinching clearly governs it is also seen that stiffness 

degradation due to pinching is observed at a point away from zero-moment crossing as 

observed in the tests by [15]. This means that the stiffness of the unloading branch remains 

same up to a moment value in the reloading region. This moment value can be called as 

residual moment and used to determine the starting point of pinching. With this modification 

the user is allowed to define the residual moment value. Then this residual moment value is 

transformed to a rotation value. In other words, the rotation value of the point at which the 

residual moment is reached (point A’ in Figure 2) is accepted as the starting point of pinching. 

In the modified model, this residual moment value is also used as a limiting value for the 

value of maxmom shown in Figure 2. As a result, if the stiffness of the any branch of the 

positive envelope curve is smaller than zero, the moment can decrease up to this residual 

moment value and then remains constant. This limitation is applied by calculating the rotation 

value of point D, rotlim. In the original model this limiting moment value is zero instead of 

residual moment and it is the point D’ instead of D that is used to determine the value of 

rotlim.  
 

  

Figure 2: Behavior of the proposed quadra-linear model 
 

Another modification introduced to the model is based on an observation that for some 

semi-rigid connections the residual moment may get smaller as load cycles get larger, where 

such an effect is absent in the model by [11]. This modification is arranged by introducing a 

slope value, Ktp, which is the slope of the line passing through a point on the moment axis. 

This point is selected as the point of residual moment on the moment axis (see Figure 2). This 

slope value Ktp is provided by the user. In this case a new variable called as momrestpp is 

introduced which is changing according to parameters momrestp and Ktp. It can also be 
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noticed that as cycles get larger the residual moment can take negative values which is 

reasonable when considering experimental results that are presented in the next section.  

3.2 Verification of proposed model 

The accuracy of the model presented above can be validated with the test results of semi-

rigid connections existing in the literature. The results obtained by Abolmaali et al. [15] were 

first selected for this purpose. In that study two types of connections were tested namely 

bolted-bolted and welded-bolted double web angle connections. Bolted-bolted means angles 

are bolted to both beam web and column flange. Welded bolted means angles are welded to 

beam web and bolted to column flange. The connection between the angle and beam web is 

important. Because pinching mostly occurs due to enforcing of the bolts to the beam web. If 

the bolts have necessary strength, the circular bolt holes in the web will be oval shaped and if 

the angles have necessary strength the failure mode will be most probably web bearing. On 

the other hand when angles are welded to the beam web, due to high strength of weld, angle 

yielding governs the failure mode. In the study 5 bolted-bolted and 5 welded-bolted 

connections were used for validation. It was stated by [15] that the stiffness and strength 

provided by the double web angled and welded-bolted connections tested in their study 

provided the same stiffness and strength characteristics of moment connections.  
 

  

 a) DW-BB-127-13-16-114-5-610    b) DW-WB-152-19-19-191-5-610 

Figure 3: Comparison of proposed semi-rigid connection model  

for double web angle connection tests by Abolmaali et al. [15] 
 

All of the specimens tested by [15] were successfully simulated with the proposed 

hysteretic connection model, but for the sake of presentation only two per connection type are 

presented in Figure 3, and detailed presentation of the results is available in the thesis of 

Koseoglu [14]. It is worth to point out that the pinching parameters of the proposed hysteretic 

model is obtained through calibration with experimental data and details are available in [14]; 

thus one can choose any level of pinching by considering the types of moment-rotation curves 

presented for all calibrated specimens there.  

The second comparison is on the connection specimens tested by Komuro et al. [16], 

where two top and seat angles with double web angle (TSADWA) specimens were tested 

under both monotonic and cyclic loadings. It is known that TSADWA connection 

configuration provides a semi-rigid behavior that is closer to moment type connection and 

provides comparable stiffness and strength in this regards. Initial connection stiffness and the 

maximum moment reached in the experiment were documented by [16], and it was shown 

that the monotonic curve obtained by power model [17] provides close estimation of these 
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values with respect to experimental data. Both of TSADWA connections tested demonstrated 

pinching effects and residual moment capacities that are different than zero when pinching 

initiates. The proposed hysteretic connection model is used to demonstrate the capabilities of 

the model in tracing the response of the three specimens, and it is evident from Figure 4 that 

close fit can obtained for all specimens.  
 

 

a) W18 – TSADWA connection   c) W29 – TSADWA connection 

Figure 4: Comparison of proposed semi-rigid connection model for top and seat angle angles  

with/without double web angles connection tests by Komuro et al. [16] 
 

Last comparison is undertaken by considering the flush end plate connections tested by 

Bernuzzi et al. [18]. In these tests, the results of the specimens showed not only pinching 

effects but also strength loss, where by the way residual moment values were observed to be 

non-existing. The response of the proposed model vs. experimental data for two of the tested 

specimens is presented in Figure 5, and the proposed model is shown here to be able to follow 

the behavior of strength loss, as well.  
 

     

a) FPC/B connection      b) FPC/D connection 

Figure 5: Comparison of proposed semi-rigid connection model  

for flush end plate connection tests by Bernuzzi et al. [18] 
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4 NUMERICAL EXAMPLES 

4.1 Linear elastic beam with linear end connections 

Numerical validation of the response of the macro element model is first carried out under 

linear elastic conditions. A beam fixed at both ends is loaded along its length with a 

transverse distributed element load w. Linear elastic semi-rigid connections are introduced to 

the ends of the beam at fixed supports, and the stiffness of the connections kSR is varied as a 

multiple   of flexural rigidity EI of the beam divided by the length of beam L, i.e. 
SRk EI L

, where   is numerically varied from infinity to zero to reflect fixed-fixed support to simply 

supported conditions. The beam is modeled through the use of a single macro element.  

Figure 6 presents in the y-axis the moment at fixed support divided by the theoretical 

moment 2 12wL and in the x-axis parameter   coefficient of semi-rigid connection. On the 

same plot, the moment on the middle of the beam is also plotted by normalizing the value 

with respect to the theoretical mid-span moment for a simply supported beam under 

distributed load, i.e. 2 / 8wL . As the connection coefficient   approaches theoretically to zero, 

the figure clearly demonstrates that simply supported beam boundary conditions are 

accurately reflected by the element. As the coefficient   approaches theoretically to infinity, 

the moment values that should be present in a fixed-fixed beam are accurately captured. It is 

worth to mention that the use of connections at both ends of the element and providing a 

value of exactly equal to zero for   results in stability loss for the element. In that regards, an 

input of zero by the user to release one end of the proposed beam from moment can be simply 

attained by providing a penalty value of 10
-12

 for coefficient  to gain stability. It is worth to 

mention that similar analyses can also be conducted in terms of releasing the axial or shear 

responses for a beam, as well.  
 

 

Figure 6: Moment values for varying connection stiffness to demonstrate  

simply supported to fixed-fixed beam boundary conditions 
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The second numerical validation example is an axially and flexurally rigid and infinitely 
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introducing these connections, number of nodes and degrees of freedom did not change at all, 

i.e. the column is modeled through the use of single macro element that is proposed in this 

paper. The rotational stiffness of each semi-rigid connection introduced along the rigid 

column is assigned a rigidity of EI divided by a representative length LSR for each connection, 

where LSR = LCol / (nSR – 1) along mid connections, and half of this length value at end 

connections. The theoretical stiffness of the response under a lateral applied force versus 

resulting displacement is given as 33 /Exact Colk EI L .  

The stiffness obtained with analysis of the problem with rigid column and nSR linear elastic 

semi-rigid connections distributed along element length is denoted as kSR. Figure 7 presents 

the asymptotic convergence of the result of kSR to 
Exactk  with increasing number of semi-rigid 

connections, where the connection number is increased up to 100. In order to get the result 

within 1% and 0.1% error, the use of 8 and 23 connectors was needed, respectively. It should 

be emphasized that the developed element can intake infinite number of flexible connectors in 

its element response without increasing the number of nodes and degrees of freedom, and this 

feature of the element allows reduction of data storage and increased computation time during 

structural analysis. While the use of so many connectors may not be needed for a single 

member of a steel structure, there actually exist several of such connectors in total for that 

structure. 
 

 

Figure 7: Increasing the number of semi-rigid connections  

to capture bending of a cantilever beam 
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In order to present spread of plasticity along element length and presence of nonlinear 
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of the beam. The beam is assumed to have a rectangular cross-section with depth d, width b. 

On each section of the beam, 10 layers are taken to calculate the spread of plasticity along 

section depth, where the location of the layers is calculated from midpoint integration rule. 
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and yield strength fy, then the yield moment and the plastic moment capacities of the section 

can be calculated as 2

, / 6y Beam yM bd f  and 
, 1.5p Beam yM M , respectively. In order to demonstrate 

yielding and plastic hinge formation of the beam under increasing load, nonlinear response of 

the end semi-rigid connections are assumed to have a bilinear response with initial stiffness 

, /SR ik EI L  where 11  , and the yield moment capacity of the connections is assumed to be 

25% of the plastic moment capacity of beam’s section, i.e. 
, ,0.25y SR p BeamM M , and finally the 

hardening stiffness of the connection is taken as 20% of its initial stiffness, i.e. 
, ,0.2SR h SR ik k .  

Figure 8 presents the yielding and plastic hinge formation sequence through plotting the 

moment at fixed support versus half-span deflection of the beam and the moment at half-span 

versus half-span deflection of the beam. Half-span deflection of the beam is calculated by 

post-processing of the calculated curvatures at monitoring sections and through the use of 

principle of virtual forces method. Due to the selection of the nonlinear parameters of the 

connections, yielding takes place in the connections first followed by the yielding of the 

section at half-span of the beam. Plastic moment capacity is then reached at half-span of the 

beam and finally the plastic moment capacities at the end sections of the beam positioned at 

fixed supports are reached. Moment at fixed support versus half-span deflection plot clearly 

demonstrates the significant change in the slope of the response due to yielding in the 

connection. This example clearly demonstrates the fact that the proposed element can capture 

plastic hinge formation along its element length, i.e. both at beam ends and along its length, in 

addition to the occurrence of nonlinearities in semi-rigid connections without the need for 

further discretization of the beam into several elements. This feature of the element provides 

accuracy and robustness for the nonlinear analysis of steel framed structures with partially 

restrained connections.  
 

 
Figure 8: Yielding and plastic hinge formation for a fixed-fixed supported beam  

with end semi-rigid connections under distributed load 

4.4 Vogel’s Portal Frame 

The response of the proposed element in the presence of nonlinear material and geometric 

effects is assessed by considering the portal frame example by Vogel [19] shown in Figure 9. 

This frame was analyzed as a benchmark case by several researchers: [20], [21], and [22], 

where the ultimate load factor was calculated close to 1.0. It should be emphasized that this 

frame had rigid connections, thus those studies did not focus on modeling semi-rigid 

connection response as part of their research work. The deficiency of the frame with initial 
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imperfection and large axial load presence on the columns resulted in pronounced nonlinear 

geometric effect. A trilinear stress-strain behavior was assumed by [19] with a yield stress of 

235 MPa and elastic modulus of 205 GPa. Perfect plasticity was assumed until 10 times the 

yield strain, after which strain hardening initiated with a slope of 2% of elastic modulus. The 

loadings shown on the frame in Figure 11 are increased proportionally with the same load 

factor. The analysis by [19] found the ultimate load factor as 1.017 and could not trace the 

post-ultimate behavior. The analysis by Teh and Clarke [21] estimated the ultimate load factor 

as 1.005 and provided a post-peak response, as well.  
 

   
Figure 9: Portal frame and load factor vs. roof drift for [19] 

 
In current analysis with proposed frame element with or without the presence of shear 

deformations, single element is used for each column and the beam, and 5 monitoring sections 

coinciding with Gauss rule are considered for each element. Inclusion of shear strain is once 

again considered only on the web and the shear correction coefficient is taken into account. 

Current analysis is carried out by considering a load factor incrementation and iteration 

strategy in order to obtain the ultimate load accurately and trace the post-peak response. It is 

worth to point out that only the two end monitoring sections show inelastic behavior while the 

middle three sections remain elastic. At each end section 4 and 8 layers are used in each 

flange and web, respectively, where the layer discretization is done due to trapezoidal 

integration rule. With this discretization, the ultimate load factor was calculated as 1.005 with 

and without the presence of shear deformations. A finer discretization is considered by using 

10 sections where again only the two end sections show inelasticity, and 8 and 12 layers are 

used for each flange and web of end sections, respectively. This discretization resulted in 

exactly 1.000 load factor with and without the presence of shear deformations. The influence 

of shear is numerically negligible on ultimate load for this problem, but there is slight 

stiffness decrease in the presence of shear deformations. By the way, the difference in the 

curves obtained between current analysis and the analysis by [21] could be due to absence of 

modeling the residual stresses on the sections of current frame element model.  

This structure was also analyzed in a recent study by Nguyen and Kim [4] and the ultimate 

load factor was obtained as 1.009. The same structure presented above was further analyzed 

by replacing the rigid beam to column connections with semi-rigid ones in the study by [4]. 

Connection response was modeled with the power model proposed by Kishi et al. [17], where 

the initial stiffness of the connection taken as 31635 kN-m/rad, ultimate moment capacity of 

the connection taken as 142 kN-m, and the shape parameter set to 0.98. The ultimate load 

factor obtained by [4] was 0.940 by the use of a spread of inelasticity model over element 

length and section depth and 0.924 by the use of a lumped plasticity model. The proposed 
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model in this paper with coarse discretization as described above resulted in 0.933 load factor 

with and without the presence of shear deformations, while mesh refinement resulted in 0.928 

load factor with and without the presence of shear deformations.  

Comparison of the load vs. displacement plots from analysis by [4] and current analysis are 

presented in Figure 10. It is evident that initial elastic stiffness of the structure and the ultimate 

load factor obtained with current study are perfectly matching the results of [4] for the case of 

semi-rigid connections; however, there is slight deviation of results in terms of load vs. 

displacement curves as seen in Figure 10. This deviation is thought to be due to the absence of 

residual stresses in the modeling phase of current analysis, where such a deviation was also 

present for the case with rigid connections in Figure 9. Exclusion of residual stresses in 

analysis provides slight stiffening compared to analysis with residual stresses once yielding 

initiates in response.  
 

 

Figure 10: Load factor vs. roof drift for Vogel frame with semi-rigid connections 

4.5 Stelmack’s Frame 

The two-story steel frame with semi-rigid beam to column connections tested by Stelmack 

[23] is considered as a last verification example. Boundary conditions and geometry of the 

members is presented in Figure 11. All members of the steel frame were made up of W5×16 

beam sections with A36 steel material. Concentrated loads acting on the first story beam were 

first acted on and then the lateral loads with loading profile as given in Figure 11 were applied 

in the experiment.  
 

   

Figure 11: Lateral load vs. displacement at 1
st
 story for two-story frame by Stelmack [23] 
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This experiment was considered as a benchmark verification example in the literature by 

Nguyen and Kim [4], as well. Moment-rotation response of the connections were presented by 

[23]. Response of the connections were all modeled numerically in [4] through the use of 

power model proposed by Kishi et al. [17], where initial stiffness of the connection was taken 

as 4463 kN-m/rad, ultimate moment capacity of the connection taken as 26 kN-m, and the 

shape parameter set to 0.87. Same model with given parameters are also considered in current 

study in order to provide a valid comparison not only with the experimental data by [23] but 

also with the numerical study undertaken by [4]. Each column is modeled through the use of 

single proposed frame element, first story beam is partitioned into three elements in order to 

apply the concentrated loads and the top story beam is modeled by considering single 

proposed frame element. Response of each element is obtained through a fine discretization 

by using 10 sections per element with Gauss-Lobatto integration rule. It is worth to point out 

that most of the sections remain elastic. Response of each section is obtained by fiber 

discretization of each section into 8 and 12 layers for each flange and web, respectively.  

Comparison of the lateral load vs. displacement values at 1
st
 story level are provided in 

Figure 11. It is evident that in the absence of residual stresses, the proposed frame element 

with localized connections clearly provide perfect match with the numerical results obtained 

by Nguyen and Kim [4] and close match with experimental data by Stelmack [23]. 

5 INFLUENCE OF HYSTERETIC CONNECTION RESPONSE 

This example considers a portal frame with a single bay and one story similar to Vogel’s 

frame in Figure 9, but this time the beam to column connections consider semi-rigidity. All 

columns have 3.6 m length and IPE 330 section and the beam has 6 m length and IPE 300 

section; thus, ensuring strong column – weak beam design requirement. No initial 

imperfection is provided to the portal frame this time. Theoretical values for yield moment 

and plastic moment capacities of the section are calculated from elastic and plastic section 

moduli of IPE300 as 197 kN-m and 222 kN-m, respectively. For all columns and the beam a 

bilinear hysteretic steel material with fy = 355 MPa, E = 200 GPa and Eh= 0.005E is used 

along element length, where each element is monitored at 5 Lobatto integration points, and at 

each section 4 and 8 layers are used in each flange and web, respectively, where the layer 

discretization is done due to midpoint integration rule. The shear response along element 

length is assumed to remain linear elastic. Alternatively, it is also possible to use fully 

coupled normal stress and shear stress response [8] to capture shear yielding behavior of short 

and long link members in eccentrically braced frames. 

For semi-rigid connections of beams, the parameters used in the specimen shown in Figure 

3.b is considered in order to incorporate hysteretic behavior in connection’s cyclic response. 

While this connection is a double web angled and welded-bolted connection, it can be safely 

used for design purposes to provide the same stiffness and strength characteristics of moment 

connections [15]. Initial rotational stiffness for the connection is 30670 kN-m/rad; thus, the 

ratio between the initial stiffness of the connection with respect to the beam flexural rigidity 

(EI/L)beam is close to 11 and satisfies the partially restrained connection classification. 

Furthermore, plastic moment capacity of the connection for this connection was 204 kN-m, 

and this value in analysis is adjusted to be the same as the plastic moment capacity of the 

beam so that connection is as strong as the beam for the sake of analysis.  

In addition to this analysis case with above selected parameters for the semi-rigid 

connection, an alternative analysis is also conducted, where bilinear response is assumed to be 

present in the semi-rigid connection instead of the proposed quadra-linear model with 

hysteretic behavior. The bilinear model can be considered as an approximation to the 
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nonlinear hardening models employed in the prior frame finite element models. It is worth to 

mention that the bilinear model and the nonlinear hardening models do not incorporate 

stiffness and strength degradation, as well as pinching behavior. For the bilinear model, the 

experimental backbone curve of connection response is approximated with a bilinear curve 

such that initial stiffness is 30670 kN-m/rad, the moment value where bilinearity starts is 150 

kN-m and the hardening stiffness is set at 1650 kN-m so that the same ultimate moment is 

reached at the same rotation capacity. This comparison will demonstrate the importance of the 

modeling the hysteretic response of semi-rigid connections on the energy absorption capacity 

during cyclic loading without the need for conducting elaborate nonlinear structural dynamic 

analyses.  

The beam is loaded with a 15 kN/m uniform distributed load and 50 kN additional 

downward acting loads are applied on top of each column. First, the gravity loads are applied, 

and then a cyclic displacement reversal with a magnitude of 0.5 m is imposed at the roof 

level. Three different analyses cases are considered in which nonlinear geometric 

transformations with corotational formulation was considered. The analyses cases are as 

follows: rigid connection model with nonlinear geometry (Rigid); bilinear semi-rigid 

connection model with nonlinear geometry (Semi-rigid - Bilinear); proposed semi-rigid 

connection model with nonlinear geometry (Semi-rigid - Hysteretic). In all analyses, spread of 

inelasticity along element length is taken into account. It should be emphasized that quadratic 

convergence rate is obtained in the presence of nonlinear geometric effects, where 

corotational transformation is observed to provide a stable convergence scheme in this 

regards. The same analyses were also conducted under linear geometric transformation, but 

the results were only slightly changing, thus they are not presented for comparison.  
 

 

Figure 12: Effects of hysteretic behavior of semi-rigid connection  

and nonlinear geometry on structural response 
 

The responses obtained from the rigid and semi-rigid cases in Figure 12 clearly demonstrate 

the importance of the linear and nonlinear behavior of semi-rigid connections. Moment vs. 

rotation response in the left semi-rigid connection and moment vs. curvature response at the 

left end of the beam are presented in Figure 13, where it is observed that the drop in the energy 

dissipation by bilinear semi-rigid (SR) connection model with respect to hysteretic connection 

model is compensated by increased curvature demands at both ends of the beam.  
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Figure 13: Response of the left connection and left end of the beam  

with bilinear and hysteretic semi-rigid (SR) connection models 

 

 
Figure 14: Dissipated energy by semi-rigid connection  

and structure under various modeling assumptions 

 

Energy dissipation values in the structure and in the left semi-rigid connection are 

presented for different modeling strategies in Figure 14. Comparison of dissipated energy in 

the structure with rigid connection modeling approach and hysteretic connection modeling 

approach stands at 32% difference, and by the way this difference is 15% when bilinear 

connection model is used. Although modeling of the semi-rigid connection response with 
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cycling was not altered in all analyses cases. 
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The differences in the load-deflection plots and in the energy dissipation values among the 

rigid model, bilinear model and proposed hysteretic model for semi-rigid connections 

furthermore presents the necessity of development and use of such advanced models for the 

description of the nonlinear response of steel structures with partially restrained connections 

under cyclic loadings.  

6 CONCLUSION 

In this paper, an accurate and robust beam element with localized semi-rigid connections 

is developed for the nonlinear analysis of steel structures. The element derivation bases on 

force formulation, and the element captures accurate behavior of spread of inelasticity along 

element length and section depth along beam span. Incorporation of semi-rigid connections’ 

behavior into element response is handled without any further increase in degrees of freedom. 

In fact the proposed macro element can include any number of connections located along the 

beam; thus column tree connections can be easily analyzed by using single element per span 

by using the proposed element.  

As part of this study, a hysteretic section model is developed for capturing the cyclic 

behavior of semi-rigid connections, as well. Moment rotation curves of experimental data can 

be closely traced due to the inclusion of residual moment capacity and pinching effects in the 

model. The developed section model can be easily incorporated into the macro element, and a 

more realistic nonlinear structural analysis can be performed. 

Effect of semi-rigid connections on the initial lateral stiffness and load carrying capacity 

of steel structures is verified by comparison with numerical and experimental results available 

in the literature. Effect of pinching on the energy dissipation of the building is observed by 

comparing the results with the bilinear modeling approach of the semi-rigid connection. It is 

seen that pinching of the connections reduces the energy dissipation of a steel structure in a 

pronounced fashion and should be incorporated into the modeling when earthquake 

excitations are to be considered through a static cyclic or nonlinear time history analyses.  
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