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SUMMARY 
 

Structural members yielding in shear are used in earthquake resistant systems, such as eccentrically 
braced steel frames and systems with passive energy dissipation devices, in a conscious effort to 
concentrate the energy dissipation capacity of the structure in components that can be repaired or replaced 
after a major earthquake. The simulation of the energy dissipation capacity of these components is 
important in the evaluation of the seismic response of these structural systems. This paper presents a new 
beam element for the simulation of the hysteretic behavior of shear-yielding members. The element is 
based on a three-field variational formulation with independent force, displacement and deformation 
fields. The displacement field is based on Timoshenko's shear beam theory. The nonlinear response of the 
element arises from the integration of biaxial stress-strain relations over several control sections along the 
element length. The biaxial material model accounts for the interaction between normal and shear stress. 
While previous concentrated plasticity models involve parameter tuning for different loading and support 
conditions, the proposed model is general in its derivation of the axial force-shear-flexure interaction 
from the material response. The proposed model shows the characteristic advantages of force-based beam 
elements and is capable of simulating the inelastic response of short beams with a single element without 
suffering from shear locking. The effect of shear is significant in these members during the elastic and 
inelastic response. The ability of the model to accurately represent the hysteretic behavior of short shear-
yielding members is ascertained with correlation studies of analytical results with available experimental 
data from shear-link experiments. 

INTRODUCTION 
 
Ductile yielding of members in shear represents an effective mechanism of energy dissipation in 
earthquake resistant structural systems. Short shear-yielding members appear first as shear-links of 
eccentrically braced frames (EBF) in the work by Roeder and Popov [1], Hjelmstad and Popov [2], and 
Kasai and Popov [3]. These studies led to the wide adoption of eccentrically braced frames in earthquake 
resistant design. The idea of utilizing shear yielding members as energy dissipation devices gave 
inspiration for the development of more recent innovative structural systems such as disposable knee 
braced frames by Balendra et al. [4], aluminum shear-links by Rai and Wallace [5], hybrid-coupled walls 
by Harries et al. [6], and proposal for structural rehabilitation by Ghobarah and Elfath [7]. More recently, 
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shear-links will be used as energy dissipation device between the tower shafts of the new San Francisco-
Oakland Bay Bridge east span (McDaniel et al. [8]).  
 
Modeling efforts for shear-yielding members to date center on relatively simplistic modifications of the 
one-component and two-component model Giberson [9]. In these models inelastic action is concentrated 
at the element ends in the form of elastic-perfectly plastic springs. Roeder and Popov [10], Ricles and 
Popov [11], and Ramadan and Ghobarah [12] have used variations of this general concept to arrive at a 
simple representation of the effect of shear on the plastic moment capacity of short steel members. These 
models suffer from two drawbacks: (a) they use available experimental data to derive conclusions about 
the interaction effects, which work well in some cases, but not in others; they are, therefore, empirical in 
nature, and (b) they are subject to the well-known calibration limitations of the one-component model 
about a midspan point of inflection in the member. This may not be accurate in long links under the 
combined effect of axial force, shear and bending moment. Models with such strong empirical basis and 
dependence of parameters on loading and boundary conditions lack generality and cannot be used in 
predictive studies of structural system response. To alleviate the lack of such a model the proposed beam 
element is based on distributed inelasticity in the member with integration of biaxial material response in 
several control sections. Even though it is clearly more complex than the previous models, it displays 
robust numerical behavior and is characterized by the ability to represent accurately the response of short 
and long shear-links over a wide range of loading conditions without the need of parameter calibration. It 
is this latter aspect that makes it useful in system response investigations of earthquake resistant structures 
with shear-yielding members. 
 

FINITE ELEMENT FORMULATION 
 
Beam element formulations based on displacement interpolation polynomials suffer from shear locking. 
To mitigate this problem several solutions have been proposed in the literature (Bathe [13]). The 
formulation in this paper eliminates the locking problem with the use of independent generalized stress, 
generalized strain, and displacement interpolation in a three-field Hu-Washizu functional, as described for 
the general case in Taylor et al. [14]. With σ  denoting the stress tensor, ε  the strain tensor, and u  the 
displacements we have 
 
 ( )T

HW ext( , , ) ( ) d dW uσ ε u ε σ ε ε
Ω Ω

Π = Ω + − Ω +Π∫ ∫  (1) 

 
( )W ε is the strain energy function, uε  denotes the strains derived from displacement compatibility, and 

extΠ is the potential energy of the external loading due to body forces, displacement, and traction 
boundary conditions. In (1), the domain of the element is denoted by Ω , the traction boundaries are 
denoted by tΓ , and the displacement boundaries by uΓ . 
 
Kinematic Approximations 
Limiting ourselves to the planar case, we base the displacement field u  in (1) on the assumptions of the 
Timoshenko beam theory 
 
 [ ]T T

x y( , ) ( , ) ( ) ( ) ( )u x y u x y u x y x w xu θ⎡ ⎤= = −⎣ ⎦  (2) 

 
where u(x) is the axial displacement of the beam axis, ( )xθ  is the rotation of the beam cross section, and 
w(x) is the transverse displacement of the beam axis. 
 



The compatible strains for the displacement field in (2) result by appropriate differentiation 
  
 ( ) ( ) and ( ) ( )u u

xx xyu x y x x w xε θ γ θ′ ′ ′= − = − +  (3) 

 
The three-field variational form offers flexibility in selecting strain fields that are independent from the 
displacement compatible fields in (3). We denote these as follows 
 
 
 ( ) ( ) and ( , ) ( )xx a xyx y x y z xε ε κ γ φ γ= − =  (4) 
 

( )a xε is the axial deformation, ( )xκ  is the curvature, and ( )xγ is the representative shear distortion along 
the beam axis. The variation of the shear strain field over the cross section is described by interpolation 
function ( , )y zφ . This function is derived by satisfying boundary conditions under elastostatic conditions 
with proper tractions on the surface of the beam. In this work, the simplification ( , ) ( )y z yφ φ≡  is 
assumed, which is true for narrow beam sections or for problems where the Poisson effect is negligible. 
 
Force Interpolation Functions 
Taking the variation of the three-field functional in (1), and introducing the strain fields from (3) and (4) 
we obtain a reduced variational form. Integration by parts of all terms with derivatives in the 
displacement fields reveals the suitable interpolation functions for the section forces (generalized stress 
terms). Moreover this approach results in the elimination of the need for a displacement field 
approximation along the beam. A detailed presentation of the process is given in Taylor et al. [14]. For 
uniform member forces the force interpolation functions are 
  
 p( ) ( ) ( )x x x= +s b q s  (5) 

 
[ ]T( ) ( ) ( ) ( )x N x M x V xs =  is the vector of section force resultants or generalized stresses,  

[ ]T1 2 3q q qq =  represents the basic element forces (Figure 1), and ( )xb  is a matrix of force 
interpolation functions. 
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Figure 1: Basic forces and deformations of beam element 
 
The matrix of force interpolation functions along with the section stress resultants p ( )xs  due to element 
loading w  is given by the following expressions 
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The following variational form is obtained after substitution of the preceding field variables, 
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p wx dx x dxe s b q s q b e q au u a q u p⎡ ⎤δΠ = δ − − − δ + δ + δ − δ⎣ ⎦∫ ∫  (7) 

[ ]T( )a xe ε κ γ=  is the section deformation vector and [ ]T
1 2 3v v vv =  is the element deformation 

vector. The element deformations can be obtained from the end displacements u  in the local reference 
system by the linear relation v au= , where a  is a simple transformation matrix for removing the rigid 
body modes from the end displacement vector under linear geometry. Details can be found elsewhere 
(Filippou and Fenves [15]). Finally, T

2 0 0 2 0w x y yw L w L w Lp ⎡ ⎤= ⎣ ⎦  are the end forces due to 
element loads. 
 
Final Form of the Element Formulation 
The matrix expression of the variational form is obtained by evaluating the integrals in (7) at discrete 
integration points or control sections 
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 (8) 

where l denotes the integration point.  
 
Due to the nonlinear nature of the problem, (8) is linearized relative to a reference point, 
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The section tangent stiffness for integration point l is s, ˆl l l= ∂ ∂k s e . 
 
The section deformations le  and basic element forces q  can be condensed out at the element level in (9) 
resulting in a modified stiffness expression for the element with mixed formulation. With this approach 
the element end displacement-end force relation is obtained in a form such that the element can be 
directly implemented in commonly available finite element platforms that make use of the direct stiffness 
implementation of the displacement method of analysis. The implementation of the element is discussed 
by Taylor et al. [14]. 
 



Section Modeling 
Shear-link members have regular symmetric cross sections. Most common are wide flange sections, but 
rectangular sections are also used in energy dissipation devices. In either case the section deforms in-
plane. On account of the symmetry of the cross section shear forces do not give rise to torsional moments 
either and torsional effects are minimal. The section deformations can be expressed in accordance with 
the relations in (4), which can be written in compact form as  

 s s s

1 0
, where ( , )

0 0 ( )
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y z
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⎣ ⎦
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The shear strain distribution function ( ) ( )y yψ ϕ β=  depends on an assumption about function ( )yϕ  
and on the scale parameter β . The parameter is selected so that the shear strain energy of the cross section 
with strain distribution ( )yψ  is equal to the shear strain energy under a constant strain value that is equal 
to the maximum value of ( )yψ . With this scaling there is no need for a shear correction factor. 
 
Section forces derived from the section deformations and the corresponding section tangent stiffness 
matrix can be obtained from the following expressions 
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T
ˆ xx xyσ σ σ⎡ ⎤= ⎣ ⎦  and mk  is the material tangent stiffness m ˆ=d dk σ ε . 

 
For a wide flange section a parabolic distribution is assumed for the shear strains and the resulting scale 
factor is 
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where α  is the ratio of the flange to the web area. For a rectangular section 0α =  and the relation for the 
shear strain distribution simplifies to ( )2 25 4 1 4 y d− . A similar approach was first proposed by 

Petrangeli et al. [16] in a model of the effect of shear on the hysteretic behavior of a reinforced concrete 
(RC) section. The model was developed in the context of a force-based beam element with layer 
discretization of the cross section. In the study both constant and variable shear strains were used for a 
rectangular RC section, with the conclusion that the shear strain profile should follow the distribution 

( )2 23 2 1 4 y d− . 

 
Material Modeling 
The accurate description of the hysteretic behavior of steel members by the proposed model depends on 
the representation of the material response. Even though a J2 plasticity model is common in finite element 
analysis for the purpose, such a model is unable to represent accurately the hysteretic behavior of steel 
over several cycles of inelastic deformation. This fact is supported by the experimental observations of 
the shear link response for the specimens tested by Hjelmstad and Popov [2] and Kasai and Popov [3]. 
The following points are relevant: (a) cycling under constant inelastic deformation does not result in 
strength increase, (b) equal strength is observed under positive, or negative displacement values of equal 
magnitude, and, (c) a strength increase results when deformations exceed the values experienced during 
preceding cycles. Such hardening behavior cannot be obtained with the linear isotropic and kinematic 
hardening definitions of classical plasticity theory. This was confirmed by numerical simulations with a J2 
plasticity model that was calibrated to match the monotonic stress-strain behavior of the material. When 



this model was cycled to the strain values measured in the tests, it exhibited excessive hardening. 
 
To address the J2 plasticity material model limitations, the generalized J2 plasticity material model 
proposed by Lubliner et al. [17] was selected. This model is characterized by its simplicity and 
computational efficiency relative to nonlinear hardening and bounding surface plasticity models. In 
generalized plasticity theory, the inelastic response is governed by two functions: the limit function and 
the yield function, which is also present in classical plasticity theory. The limit function separates 
admissible from inadmissible stress states providing a smooth asymptotic transition between the elastic 
and inelastic state during loading of the material. This smooth transition is essential in approximating the 
Bauschinger effect under cyclic loading conditions. Under incomplete load reversal without change of 
sign for the stress, renewed plastic strain takes place before the material reaches the stress from which 
unloading initiated. The generalized plasticity model makes use of two additional parameters relative to 
classical J2 plasticity theory: a parameter ϕ  that measures the distance between the asymptotic yield 
surface and the current yield function, and a parameter δ  that controls the curvature of the transition from 
the yield function to the asymptotic yield surface. 
 
To establish a rational material description the parameters of the generalized J2 plasticity model were 
calibrated by comparison of the material response with the extensive experimental measurements of 
cyclic uniaxial steel response by Panthaki [18]. The following model properties were found to exhibit 
good agreement with the experimental results: initial modulus sE E= , isotropic hardening 
modulus 0.0002iH E≈ , kinematic hardening modulus 0.004kH E≈ , radius of yield function 0.85y yfσ ≈ , 
distance from asymptotic yield surface to yield function u yf fφ ≈ − , Poisson ratio 0.3ν = , and transition 
parameter from yield function to asymptotic yield surface  0.015Eδ ≈ . It can be observed that the 
isotropic hardening value is very small, while kinematic hardening is about 20 times higher, but still 
relatively small. With the above parameter selection the only free material parameters are the values of 
the initial elastic modulus sE , the uniaxial yield strength yf , and the uniaxial tensile strength uf , which 
are readily available from the experimental data. 
  
The generalized plasticity model by Lubliner et al. [17] is three dimensional, while the proposed beam 
element depends on only two stress values, the normal and shear stress at a material point of the cross 
section. For this case an algorithm similar to that proposed by Klinkel and Govindjee [19] is used to 
impose the condition of zero out-of-plane stress in the three dimensional constitutive model.  
 

CORRELATION STUDIES 
 
Specimen tested by Hjelmstad and Popov [2] 
Hjelmstad and Popov [2] performed fifteen tests on full size shear-links to determine the general response 
of these short beams to cyclic loading. They have especially investigated the amount of web-stiffeners 
needed to prevent web buckling in order for the member to exhibit stable cyclic loops with significant 
energy dissipation. Their specimens were all tested under equal end moments at member ends. In the 
following figures we compare the analytical results with the measured response from specimen 4 of the 
Hjelmstad/Popov shear-link experiments. The geometric properties of the beam are shown in Figure 2. 
The beam cross section is a W18x40, the length L of the beam is 28 inches, and the depth d is 17.88 in, 
resulting in a span to depth ratio L/d of 1.56; the flange width fb  is 5.985 in, the web thickness wt  is 
0.314 in, and the flange thickness ft  is 0.521 in. The plastic modulus about the major axis xZ  is 78.4 in3. 
 
For the analytical studies the link was represented by a single element with 3 Gauss-Lobatto integration 
points (control sections) along the span. Each section was subdivided into 16 layers, with four layers in 



each flange and eight in the web. Midpoint evaluation of the distribution functions over the section was 
used. In the material description of the hysteretic behavior of each layer the following material properties 
were used (Hjelmstad and Popov [2]) : E 28000 ksi= , 35 ksiyf = and 65 ksiuf = . With these material 
properties the parameters of the generalized J2 plasticity model are: Poisson ratio 0.3ν = , isotropic 
hardening modulus 5ksiiH = , kinematic hardening modulus 112 ksikH = , distance of asymptotic yield 
surface from yield function 30 ksiφ = , and transition parameter 420 ksiδ = . 
 
The shear links were tested with imposed end displacements at the right end, as shown in Figure 2.  
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W18 40×

 
Figure 2: Specimen 4 - Hjelmstad and Popov [2] 
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Figure 3: Analytical results vs. experimental data for specimen 4 by Hjelmstad and Popov [2] 

 
The comparison of analytical results with experimental measurements of the hysteretic response of the 
shear-link specimen 4 are shown in Figure 3. Excellent agreement regarding strength and energy 
dissipation capacity is observed. A slight discrepancy in the unloading stiffness can be attributed to the 
observation in the original study that complete restraint of the rather short and, consequently, stiff 
specimen was not possible and that some slip of the specimen relative to the support was observed 
(Hjelmstad and Popov [2]). It is worth stressing that the excellent agreement is obtained with consistent 
material parameters with no additional adjustment. Thus, the results can be considered of predictive 
quality and confirm the rationality of the proposed model. 
 
Specimen Tested by Kasai and Popov [3] 
Kasai and Popov [3] performed seven tests for studying the effect of unequal end moments at the ends of 
the shear-link. When a shear-link is located next to a column in an eccentrically braced frame, the 



moment at the column end of the link is generally much larger than the moment at the opposite end of the 
link. In order to induce such a moment distribution in the shear-link specimen, Kasai and Popov [3] 
selected the experimental set-up in Figure 4: at the end denoted with A the shear link is fully restrained; at 
the opposite shear-link end denoted with B, the shear link is connected to a beam segment with the same 
cross-section. The far end of the beam segment denoted with C in the figure is free. Two equal 
displacements are imposed at points B and C, so as to create a bending moment distribution with unequal 
end moments in the shear link. 
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Figure 4: Specimen 5 from Kasai and Popov [3] 
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Figure 5: Analytical results vs. experimental data for specimen 5 by Kasai and Popov [3] 

 
In the following correlation study specimen 5 from the Kasai and Popov [3] experiments is selected. The 
geometric properties of the specimen are listed in Figure 4. The long shear link has an aspect ratio L/d  of 
2.2. Its web is stiffened to ensure stable hysteretic behavior and delay local buckling. For the analytical 
studies the link was represented by a single element with 3 Gauss-Lobatto integration points (control 
sections) along the span. Each section was subdivided into 16 layers, with four layers in each flange and 
eight in the web. Midpoint evaluation of the distribution functions over the section was used. In the 
material description of the hysteretic behavior of each layer the following material properties were used 
(Kasai and Popov [3]) : E 29000 ksi= , 50 ksiyf = and 70 ksiuf = . With these material properties the 
parameters of the generalized J2 plasticity model are: Poisson ratio 0.3ν = , isotropic hardening modulus 

6 ksiiH = , kinematic hardening modulus 120 ksikH = , distance of asymptotic yield surface from yield 
function 20 ksiφ = , and transition parameter 450 ksiδ = . 
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Figure 6: Analytical bending moment-displacement history at ends A and B 

 

 
Figure 7: Measured moment-end displacement history  for specimen 5 by Kasai and Popov [3] 

 
The comparison of analytical results with experimental measurements of the hysteretic response of the 
shear-link specimen 5 are shown in Figure 5. Excellent agreement regarding strength and energy 
dissipation capacity for the entire shear link is observed in the shear-displacement relation of Figure 5. 
The comparison of analytical with experimental results for the end moment-displacement relation at ends 
A and B of the shear link can be established from Figures 6 and 7. While relatively good overall 
agreement is observed, the history of the relative moment values at the ends of the shear link is only 
approximated by the model. A similar observation was made in an earlier study by Ricles and Popov [20]. 
This is probably due to fact that the specimen suffered local buckling of the web and flange at end A, as 
corroborated by the negative slope of the moment-displacement relation as well as by the slight strength 
reduction in the later loading stages of Figure 7. This effect is not accounted for in the proposed section 
model. In spite of the presence of local buckling at end A, the specimen shows significant strength 
increase through strain hardening at end B. This is not captured by the model. We suspect that a complex 
three-dimensional behavior of the shear link is at the root of this phenomenon, on account of the 
interaction of the specimen with the loading device that maintains the displacement at end B equal to the 



imposed displacement at the free end of the beam segment at point C in Figure 4. In any case, a more 
thorough analysis of the analytical results and comparison with three dimensional finite element models is 
planned in the future in order to understand better this phenomenon. 

 
CONCLUSIONS 

 
The proposed beam element that includes the interaction of axial force, bending moment and shear force 
is  able to simulate accurately the hysteretic behavior of short and moderately long shear link in 
eccentrically braced frames or passive energy dissipation devices. It is noteworthy that analytical results 
of excellent accuracy were obtained with a consistent set of parameters for a generalized J2 plasticity 
material model. These were derived by calibrating the model with uniaxial cyclic steel tests that were 
completely independent of the shear link specimens used in the correlation studies. The only material 
parameters for each investigation are the initial elastic modulus, the yield strength, and the ultimate 
tensile strength. These are readily available from coupon tests of the material. It is, therefore, possible to 
use the proposed model in a predictive setting for the analysis of structural elements and systems that 
employ shear elements for passive energy dissipation in earthquake resistant design. 
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