
SUPPLEMENTARY PROBLEMS 
 

1. We can obtain qualitative information about the solutions to first order differential 

equation by drawing its direction (flow) field. Use the qualitative approach with the 

following equations and plot the given solution over its direction field:  

(a) 1y(0),ey y  ,  20.0t0  , whose exact solution is ))et1(eln()t(y  . 
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t

y

t

1
y 2

2
 ,  2t1  , whose exact solution is t1)t(y  . 
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y t2  ,  2t1  , whose exact solution is )ee(t)t(y t2  . 

(d) 0u(0),v2u3u  ;  1)0(v,vu4v  ,  1t0  , whose exact solution is 

)ee()t(u tt5
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(e) 0u(0),tsin4tcosv2u4u  ;  1)0(v,tsin3vu3v  ,  2t0  , 

whose exact solution is tsine2e2)t(u t2t   , t2t e2e3)t(v   . 

Note : The following sequence of commands draws a direction field and the solution for the system:  

 (a) [T, Y] = meshgrid(0:0.02:0.20, 1:0.02:1.8);  

  FY = exp(Y); % direction field 

  L = sqrt(1 + FY.^2); % arrow length 

  t = linspace(0,0.2,100); 

  YE = log(exp(1)./(1-exp(1)*t));  

  quiver(T, Y, 1./L, FY./L, 0.5) 

  axis equal tight, hold on 

  plot(t,YE) 

  xlabel ‘t’ 

  ylabel ‘y’ 

  title ‘Vector field and the solution for the equation (a)’ 

 

(d) [U, V] = meshgrid(0:5:50, 0:5:50);  

  FU = 3*U + 2*V;  

  FV = 4*U + V; 

 t = linspace(0,1,100);  

  UE = (1/3)*(exp(5*t)-exp(-t));  

  VE = (1/3)*(exp(5*t)+2*exp(-t));  

  quiver(U, V, FU, FV, 0.5) 

  axis equal tight, hold on 

  plot(UE,VE) 

  xlabel ‘u’ 

  ylabel ‘v’ 

  title ‘Vector field and the solution for the system (d)’ 

 

2. Rewrite the system  
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 with initial conditions 0)0(y  , 1)0(y  , 1)0(z  , 0)0(z  , as an initial value problem 

 for a system of first-order equations. 

Ans.:   2 2 3d d

dt dt
y y z z y t y z z t z y            

X  subject to  (0) 0 1 1 0X . 

3. Determine a Taylor expansion for the solution of the equation 2yy  , 1)0(y  . Use this 

approximation to compute y for t 0.2  and t 1.2  to correct four decimals. Compare 

with the exact solution, and explain why the second case ( t 1.2 ) was unsuccessful.  
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    convergent 

for h 1  as N  . 

4. In a computation with Euler’s method, the following results were obtained with various 

step sizes:  

h 0.05 0.1 0.2 

)h*,x(y  1.22726 1.22595 1.22345 
  

 where )h*,x(y  denotes the numerical value of the solution )x(yy   at *x as a result of 

 the use of Euler’s method with step length h. Note that 

)h(Ohchchc*)x(y)h*,x(y 43
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   Compute a better value by repeated Richardson extrapolation.  

Ans.: 2 * *O(h ) : (qy(x ,h) y(x ,h)) (q 1)   where q .5 . 

5. Consider the initial value problem t2e3yy  , 1)0(y  . The exact solution is 

t2e)t(y  . Find the numerical solution on ]12,0[t  using 

(a) Euler's method (T1) with 5.0h   to get }ya,ta{ kk ,  

(b) Euler's method with 05.0h   to get }yb,tb{ kk , 

(c) Taylor method of order 2 (T2) with 5.0h   to get }yc,tc{ kk , 

(d) and plot them together with the exact solutions.  

 This exercise shows that while local error is controlled by using smaller h or a higher 

 order solver, the global error (defined as the cumulative error committed in taking the 

 steps from the initial to the terminal point) can not be controlled completely by the 

 numerical method because it depends also on the differential equation whether it is stable 

 or unstable.  

 The solution to the differential equation with initial condition 1)0(y  is 

 tt2 ee)t(y   . Note that as t increases, the solutions with initial values slightly different 

 from 1 separate very sharply from the solution with initial value exactly 1. This is an 

 unstable differential equation with sensitive dependence on the initial conditions.   

Note : You may use the following sequence of commands:  

 plot(ta,ya,’r’), hold on 

 plot(tb,yb,’k’)  

 plot(tc,yc,’y’) 



  ezplot(‘exp(-2*t)’,[0 12]), hold off 

  axis([0 12 -1 1]) 

  xlabel ‘t’ 

  ylabel ‘y’ 

  title ‘Exact and Approximate Solutions’ 

Ans.: 
k 1 k k kT1: y y h(y 3exp( 2t ))     , 21

k 1 k k k k k2
T2: y y h(y 3exp( 2t )) h (y 3exp( 2t ))        . 

6. Solve 
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dy




 

 using 

(a) Euler's method with 05.0h  . 

(b) Runge-Kutta-4 with 05.0h  . 

(c) Compare your results of part(a) and (b) with the exact solution 
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7. Solve the following Boundary Value Problem 
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 using 

(a) Shooting method with Euler scheme. You may assume the initial slopes to be 8.0z1   

and 1z 2   with 25.0h  .  

(b) Finite Difference method with 25.0h  . 

(c) Compare your results graphically with the exact solution x9.0xy 3  . 

 

8. Compound A diffuses through a 4-cm-long tube and reacts as it diffuses. The equation 

governing diffusion with reaction is 

0kA
dx

Ad
D
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 . 

 At one end of the tube, there is a large source of A at a concentration of MA0  (i.e. 

 1.0A)0(A 0  ). At the other end of the tube there is an adsorbent material that quickly 

 absorbs any A, making the concentration 0 M (i.e. 0.0)4(A  ). If scm101D 26  and 

 16 s104k  , what is the concentration of A as a function of distance in the tube?  

(a) Apply the linear shooting method manually for, say, 10N   subintervals as follows: 

(i) Convert the second order ODE above to a first order system by letting AU   

and AV  . 



(ii) Numerically integrate the resulting system using (I) Runge-Kutta-4 (RK4.m), 

(II) Taylor-2 (T2.m) methods for 01 A)0(U  , 0.0)0(V1   to get )x(U1  and for 

02 A)0(U  , 0.1)0(V2   to get )x(U2 .    

(iii) Compute   from the equation )4(U)1()4(U0.0 21  . 

(iv) Finally compute )x(U)1()x(U)x(U)x(A 21  . 

(b) Plot and compare with the exact solution 

)c4exp()c4exp(

))x4(cexp())x4(cexp(
A)x(A 0




  

   where Dkc   and tabulate the absolute error for the 10N   subintervals and  

  comment on the different techniques. 

 

% RK4.m 

global k D 

a = 0; b = 4; N = 10; h = (b - a)/N;  

k = 4e-6; D = 1e-6; 

U = 0.1; V = 0.0; X = 0; Y = [U; V];  

A(1) = Y(1); 

% Stepping by Runge-Kutta-4: 

for i = 1:N 

K1 = h*F(Y,X);  

K2 = h*F(Y + 0.5*K1,X + 0.5*h); 

K3 = h*F(Y + 0.5*K2,X + 0.5*h); 

K4 = h*F(Y + K3,X + h); 

Y = Y + (1/6)*(K1 + 2*K2 + 2*K3 + K4); 

% T2.m 

global k D 

a = 0; b = 4; N = 10; h = (b - a)/N;  

k = 4e-6; D = 1e-6; 

U = 0.1; V = 1.0; X = 0; Y = [U; V];  

A(1) = Y(1); 

% Stepping by Taylor-2: 

for i = 1:N 

  Y = Y+h*F(Y,X)+(1/2)*(h^2)*DF(Y,X); 

  X = X + h; A(i+1) = Y(1); 

end, clf, plot(0:h:4,A) 

 

 

X = X + h; A(i+1) = Y(1); 

end, clf, plot(0:h:4,A) 

 

 

% F.m 

function F = F(Y,X) 

global k D 

F1 = Y(2); F2 = (k/D)*Y(1);  

F = [F1; F2]; 

 

% DF.m 

function DF = DF(Y,X) 

global k D 

DF1 = (k/D)*Y(1); DF2 = (k/D)*Y(2);  

DF = [DF1; DF2]; 

 

 

9. The following nonlinear system of ODEs known as Lotka-Volterra equations represent the 

population dynamics between two species, the prey and the predator: 

yxy
dt

dy

yxx
dt

dx





 

where )t(xx   and )t(yy   designate the number of prey and predator, respectively, at 

time t. In the prey equation, x ( 0 ) represents natural increase in the prey population, 

i.e. x)death natural -birth (x  , while yx  ( 0 ) represents that the number of times 

that the predator kills the prey depends on the chance probability of the two coming 

together, i.e. higher x and y, higher the kill rate. In the predator equation, we assume that 

the number of predators would decrease by natural causes if the prey were absent, 



contributing a y  ( 0 ) term. However, the number of predators increases as a result of 

encounters with prey,  contributing a yx  ( 0 ) term. 

 

This eco-system is in a stable cycle for the parameters 25.0 ,  01.0 , 00.1 , 

01.0  with an initial population of 80)0(x   and 30)0(y  . Numerically integrate this 

system using Euler (write Euler.m as above) and Runge-Kutta-2 (write RK2.m as above) 

methods form 0t   to 15t   for the step sizes 0.25 0.50, 1.00, h  . Plot x versus y over 

the figure for the direction (flow) field below and comment on the effects of the step sizes 

and the different methods. 

Note : The following sequence of commands draws a direction (flow) field for the system:  

 [X, Y] = meshgrid(0:10:200, 0:10:200);  

 alpha = 0.25; beta = -0.01; gamma = -1.00; delta = 0.01; 

  U = alpha*X + beta*X.*Y; 

  V = gamma*Y + delta*X.*Y; 

  quiver(X, Y, U, V, 0.5) 

  axis equal tight 

  xlabel ‘x’ 

  ylabel ‘y’ 

  title ‘Vector field for the Lotka-Volterra system’ 


