HINTS to ASSIGNMENT \#1

A\&T-2.13 Since the flow velocities are the same $h_{c}=2 / 3\left(h_{a}+h_{b}\right)$. This implies that $\left\{h_{c}>6\right\} \equiv\left\{h_{a}+h_{b}>9\right\}$ which gives $P\left(\left\{h_{c}>6\right\}\right)=0.3$.

A\&T-2.15

(a) $P(\{$ able to go from A to B through $C\})=P\left(E_{2} \cap E_{3}\right)=3 / 5$.
(b) $P(\{$ able to go to $B\})=P\left(\left(E_{2} \cap E_{3}\right) \cup E_{1}\right)=$ $=P\left(E_{1}\right)+P\left(E_{2} \cap E_{3}\right)-P\left(E_{1} \cap E_{2} \cap E_{3}\right)=7 / 10$.

A\&T-2.21 Let A and B be the events that cables A and B breaks, respectively. Given $P(A)=0.02$ and $P(B \mid A)=0.3$.
(a) $P(\{$ both cables fail $\})=P(A \cap B)=0.006$.
(b) $E=\{$ the load remains lifted $\}=\left(A^{\prime} \cap B\right) \cup\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B^{\prime}\right.$ This implies $P(E)=1-P(A \cap B)$. Thus $P($ none of the cables failed $\mid E)=P\left(A^{\prime} \cap B^{\prime} \mid E\right)=\frac{P\left(A^{\prime}\right)}{P(E)}=0.99$ Since $\quad A^{\prime}=\left(A^{\prime} \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right) \quad$ and $\quad P\left(A^{\prime} \cap B\right)=0$ (impossible event).

A\&T-2.27 Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the events of getting a parking space in lots $\mathrm{A}, \mathrm{B}, \mathrm{C}$, respectively. Given $P(A)=0.2, \quad P(B)=0.1$, $P(C)=0.5, P\left(B \mid A^{\prime}\right)=0.04, P\left(C \mid A^{\prime} \cap B^{\prime}\right)=0.4$.
(a) $\mathrm{P}($ not able to park $)=P\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)=$ $=P\left(C^{\prime} \mid A^{\prime} \cap B^{\prime}\right) P\left(B^{\prime} \mid A^{\prime}\right) P\left(A^{\prime}\right)=0.4608$.
(b) $P($ able to park $)=P(A \cup B \cup C)=1-P\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)$.
(c) $P($ free of charge \mid able to park $)=P(A \cup B \mid A \cup B \cup C)=$

$$
=\frac{1-P\left(A^{\prime} \cap B^{\prime}\right)}{P(A \cup B \cup C)}=\frac{1-P\left(B^{\prime} \mid A^{\prime}\right) P\left(A^{\prime}\right)}{P(A \cup B \cup C)}=0.43 .
$$

$\underline{\text { A\&T-2.28 }} \quad$ Given $\quad P\left(A_{I}\right)=4 P\left(A_{I I}\right), \quad P\left(A_{I} \mid A_{I I}\right)=0.9$, $P\left(A_{I} \cap W_{I}\right)=0.32, \quad P\left(W_{I}\right)=1 / 2 P\left(A_{I}\right) \quad$ and \quad further $P\left(A_{I} \cap W_{I}\right)=P\left(A_{I}\right) P\left(W_{I}\right), \quad P\left(A_{I I} \cap W_{I}\right)=P\left(A_{I I}\right) P\left(W_{I}\right)$, $P\left(W_{I} \mid A_{I} \cap A_{I I}\right)=P\left(W_{I}\right)$. This implies that $P\left(A_{I}\right)=\sqrt{2(0.32)}$, $P\left(A_{I I}\right)=0.2$ and $P\left(W_{I}\right)=0.4$.
(a) $P\left(A_{I} \cap A_{I I}\right)=0.18$
(b) $P\left(A_{I} \cap W_{I} \cap A_{I I}\right)=0.072$
(c) $P\left(\left(A_{I} \cap W_{I}\right) \cup A_{I I}\right)=$

$$
=P\left(A_{I} \cap W_{I}\right)+P\left(A_{I I}\right)-P\left(A_{I} \cap W_{I} \cap A_{I I}\right)=0.448 .
$$

A\&T-2.31 Let L, S, A, R and H denote the events of transporting by land, sea, air, rail and highway, respectively. And let D denote damaged cargo. Given $P(L)=0.5, P(S)=0.3, P(A)=0.2$ with $P(H)=0.5(0.4)=0.2$ and $P(R)=0.5(0.6)=0.3$. Further $P(D \mid H)=0.1, P(D \mid R)=0.05, P(D \mid S)=0.06, P(D \mid A)=0.02$
(a) $P(D)=P(D \mid H) P(H)+\cdots+P(D \mid A) P(A)$
(b) $P(L \mid D)=P(H \cup R \mid D)=P(H \mid D)+P(R \mid D)=$ $=\frac{P(D \mid H) P(H)+P(D \mid R) P(R)}{P(D)}$. Similarly for the others $P(S \mid D)$ and $P(A \mid D)$.

A\&T-2.38 Let S be the event that the city will have satisfactory water supply. Given $P(B)=0.8, \quad P(A \cap B)=0.6$, $P\left(A^{\prime} \mid B^{\prime}\right)=0.7$. Further $\quad P\left(S \mid\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right)=0.7$,
$P(S \mid A \cap B)=0.9$ and $P\left(S \mid A^{\prime} \cap B^{\prime}\right)=0.9$. Total probability theorem gives
$P(S)=P\left(S \mid\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right) P\left(\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right)+$ $+P(S \mid A \cap B) P(A \cap B)+P\left(S \mid A^{\prime} \cap B^{\prime}\right) P\left(A^{\prime} \cap B^{\prime}\right)=0.764$.

A\&T-2.41 Let R and $F\left(\equiv R^{\prime}\right)$ be the reliability and failure of the proposed design, respectively. Given $P(H)=0.1$, $P(M)=0.1, \quad P(L)=0.8 \quad$ and further $\quad P(R \mid L)=0.999$, $P(F \mid M)=2(1-0.999), P(F \mid H)=10(1-0.999)$
(a) $P(R)=P(R \mid L) P(L)+\cdots+P(R \mid H) P(H)=0.998$
(b) Now $P(M)=1 / 9, P(L)=8 / 9 \Rightarrow P(R)=0.9989$
(c) $P(M \mid F)=\frac{P(F \mid M) P(M)}{P(F)}=0.2$ and $P(L \mid F)=0.8$.

M\&A- p41/30 $P\left(A^{\prime} \cap B^{\prime}\right)=1-P(A \cup B)=$ $=1-[P(A)+P(B)-P(A \cap B)]=\cdots=P\left(A^{\prime}\right) P\left(B^{\prime}\right)$.

M\&A- p41/34 $\quad P(B \mid T A)=\frac{P(T A \mid B) P(B)}{P(T A)}$

M\&A- p43/42 Let E and O denote shutdowns due to equipment failure and operator error, respectively. Given $P\left(E \cap O^{\prime}\right)=0.1$, $P(O)=0.4, P(E \cap O)=0.05 \Rightarrow P(E)=0.15$.
(a) $P(E \cup O)=0.5$
(b) $P\left(E^{\prime} \cap O\right)=P(O)-P(E \cap O)=0.35$
(c) $P\left(O^{\prime} \cap E^{\prime}\right)=1-P(O \cup E)=0.5$
(d) $P(O \mid E)=0.33$
(e) $P\left(O \mid E^{\prime}\right)=0.412$

M\&R-2.117 Let F, S and T denote the events that the first, the second and the third selected washer is thicker, respectively.
(a) $P(F S T)=\frac{30}{50} \frac{29}{49} \frac{28}{48}$
(b) $P\left(T \mid F^{\prime} S^{\prime}\right)=\frac{30}{48}$
(c) $P(T)=\frac{30}{50}$

M\&R-2.121 Let A be the event that the device in line 1 fails. Let B and C be the events, respectively, that the first and the second devices on line 2 fail. Similarly D and E for line 3. And F for line 4.

Given $P(B)=P(C)=P(D)=P(E)=.01 P(A)=P(F)=.02$
$P($ OPERATIONAL $)=1-P($ NOT OPERATIONAL $)=$
$=1-P(A \cap(B \cup C) \cap(D \cup E) \cap F)=$
$=1-(.02)^{2}\left(1-(0.99)^{2}\right)^{2}$

