PROBLEMS

1. Let $\mathbf{A} = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 2 & 0 \\ 3 & -2 & 1 \end{bmatrix}$. (a) Find $adj(\mathbf{A})$, (b) Compute $det(\mathbf{A})$, (c) Find the inverse of \mathbf{A} (d)

Show that $\mathbf{A}(\mathrm{adj}(\mathbf{A})) = (\mathrm{adj}(\mathbf{A}))\mathbf{A} = \mathrm{det}(\mathbf{A})\mathbf{I}_3$, (e) Show that $\mathrm{det}(\mathrm{adj}(\mathbf{A})) = (\mathrm{det}(\mathbf{A}))^2$.

2. Using only elementary row or elementary column operations (do not expand determinants), verify the following:

(a)
$$\begin{bmatrix} a-b \ 1 \ a \\ b-c \ 1 \ b \\ c-a \ 1 \ c \end{bmatrix} = \begin{bmatrix} a \ 1 \ b \\ b \ 1 \ c \\ c \ 1 \ a \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 \ a \ bc \\ 1 \ b \ ca \\ 1 \ c \ ab \end{bmatrix} = \begin{bmatrix} 1 \ a \ a^2 \\ 1 \ b \ b^2 \\ 1 \ c \ c^2 \end{bmatrix}$

For each of the following matrices find, if possible, a nonsingular matrix P such that P⁻¹AP is diagonal, i.e. A is diagonalizable:

(a)
$$\begin{bmatrix} 4 & 2 & 3 \\ 2 & 1 & 2 \\ -1 & -2 & 0 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$, (c) $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 2 & 1 & 2 \end{bmatrix}$

4. Let λ be an eigenvalue of the n×n matrix A. Show that the subset S of Rⁿ consisting of the zero vector and of all eigenvectors of A associated with λ is a subspace of Rⁿ where S = { E ∈ Rⁿ | AE = λE } ∪ {0}.

This subspace is called the eigenspace associated with λ .

5. Show that if \mathbf{A} is upper (lower) triangular matrix, then the eigenvalues of \mathbf{A} are the elements on the main diagonal of \mathbf{A} . <u>Hint</u>: Determinant of a triangular matrix is the product of its diagonal elements.

6. Let
$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 3 & 4 \\ 0 & 2 & 3 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

(a) Find a basis for the eigenspace associated with the eigenvalue $\lambda = 1$.

(b) Find a basis for the eigenspace associated with the eigenvalue $\lambda = 2$.

- 7. Let $\mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$. Compute \mathbf{D}^9 . 8. Let $\mathbf{A} = \begin{bmatrix} 3 & -5 \\ 1 & -3 \end{bmatrix}$. Compute \mathbf{A}^9 . <u>Hint</u>: Find a matrix **P** that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ is a diagonal matrix **D** and show $\mathbf{A}^9 = \mathbf{P}\mathbf{D}^9\mathbf{P}^{-1}$.
- 9. The Cayley-Hamilton theorem states that a matrix satisfies its characteristic polynomial, i.e. A is an n×n matrix with characteristic polynomial p_n(λ) = det(A−λI_n) such that p_n(λ) = λⁿ + a₁λⁿ⁻¹ + ... + a_{n-1}λ + a_n, then Aⁿ + a₁Aⁿ⁻¹ + ... + a_{n-1}A + a_nI_n = 0. Verify the Cayley Hamilton theorem for the following matrices:

(a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix}$$
, (b) $\begin{bmatrix} 3 & 3 \\ 2 & 4 \end{bmatrix}$.

10. **A** is an $n \times n$ matrix whose charateristic polynomial is $p_n(\lambda) = \lambda^n + a_1 \lambda^{n-1} + ... + a_{n-1}\lambda + a_n$. If A is nonsingular, show that $\mathbf{A}^{-1} = \frac{1}{a_n} (\mathbf{A}^{n-1} + a_1 \mathbf{A}^{n-2} + ... + a_{n-2} \mathbf{A} + a_{n-1} \mathbf{I}_n)$. How is the relation $a_n = \lambda_1 \lambda_2 ... \lambda_n = \det(\mathbf{A})$ connected to the existence of \mathbf{A}^{-1} ? $\begin{bmatrix} \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix}$

- 11. Verify that $\mathbf{Q} = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$ is an orthogonal matrix and find its inverse.
- 12. Find a third column so that the matrix $\mathbf{Q} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} & ?\\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} & ?\\ \frac{1}{\sqrt{3}} & \frac{-3}{\sqrt{14}} & ?\end{bmatrix}$ is orthogonal.

Hint: Construct orthonormal column vectors.

13. Diagonalize each given matrix and find an orthogonal matrix \mathbf{Q} that $\mathbf{Q}^{\mathrm{T}}\mathbf{A}\mathbf{Q}$ is diagonal.

(a)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, (b) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$, (c) $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
14. Apply the Gram-Schmidt orthogonalization process to $\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ to

construct an orthonormal set of vectors $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$. Can you write the result in the form of $\mathbf{A} = \mathbf{Q}\mathbf{R}$ where $\mathbf{A} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix}$, $\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix}$ and \mathbf{R} is an upper-triangular matrix? 15. Write each of the following quadratic forms in their canonical forms:

- (a) $g(x, y) = -3x^2 + 5xy 2y^2$,
- (b) $g(x, y, z) = 2x^2 + 3xy 5xz + 7yz$,
- (c) $g(x, y, z) = 3x^2 + xy 2xz + y^2 4yz 2z^2$.
- 16. Find the general solution of the differential equations as applications of eigenproblem:

(a)
$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -4 & 3 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, (b) $x''' - 3x'' - 10x' + 24x = 0$.