PROBLEMS

1. Let $\mathbf{A}=\left[\begin{array}{ccc}2 & 1 & 3 \\ -1 & 2 & 0 \\ 3 & -2 & 1\end{array}\right]$. (a) Find $\operatorname{adj}(\mathbf{A})$, (b) $\operatorname{Compute} \operatorname{det}(\mathbf{A})$, (c) Find the inverse of \mathbf{A} (d) Show that $\mathbf{A}(\operatorname{adj}(\mathbf{A}))=(\operatorname{adj}(\mathbf{A})) \mathbf{A}=\operatorname{det}(\mathbf{A}) \mathbf{I}_{3}$, (e) Show that $\operatorname{det}(\operatorname{adj}(\mathbf{A}))=(\operatorname{det}(\mathbf{A}))^{2}$.
2. Using only elementary row or elementary column operations (do not expand determinants), verify the following:
(a) $\left[\begin{array}{lll}\mathrm{a}-\mathrm{b} & 1 & \mathrm{a} \\ \mathrm{b}-\mathrm{c} & 1 & \mathrm{~b} \\ \mathrm{c}-\mathrm{a} & 1 & \mathrm{c}\end{array}\right]=\left[\begin{array}{lll}\mathrm{a} & 1 & \mathrm{~b} \\ \mathrm{~b} & 1 & \mathrm{c} \\ \mathrm{c} & 1 & \mathrm{a}\end{array}\right]$,
(b) $\left[\begin{array}{ccc}1 & \mathrm{a} & \mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{ca} \\ 1 & \mathrm{c} & \mathrm{ab}\end{array}\right]=\left[\begin{array}{lll}1 & \mathrm{a} & \mathrm{a}^{2} \\ 1 & \mathrm{~b} & \mathrm{~b}^{2} \\ 1 & \mathrm{c} & \mathrm{c}^{2}\end{array}\right]$
3. For each of the following matrices find, if possible, a nonsingular matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A P}$ is diagonal, i.e. \mathbf{A} is diagonalizable:
(a) $\left[\begin{array}{ccc}4 & 2 & 3 \\ 2 & 1 & 2 \\ -1 & -2 & 0\end{array}\right]$,
(b) $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$,
(c) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 2 & 1 & 2\end{array}\right]$
4. Let λ be an eigenvalue of the $n \times n$ matrix \mathbf{A}. Show that the subset S of \mathbf{R}^{n} consisting of the zero vector and of all eigenvectors of \mathbf{A} associated with λ is a subspace of \mathbf{R}^{n} where

$$
\mathbf{S}=\left\{\mathbf{E} \in \mathbf{R}^{\mathrm{n}} \mid \mathbf{A E}=\lambda \mathbf{E}\right\} \cup\{0\} .
$$

This subspace is called the eigenspace associated with λ.
5. Show that if \mathbf{A} is upper (lower) triangular matrix, then the eigenvalues of \mathbf{A} are the elements on the main diagonal of A. Hint: Determinant of a triangular matrix is the product of its diagonal elements.
6. Let $\mathbf{A}=\left(\begin{array}{llll}2 & 2 & 3 & 4 \\ 0 & 2 & 3 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$.
(a) Find a basis for the eigenspace associated with the eigenvalue $\lambda=1$.
(b) Find a basis for the eigenspace associated with the eigenvalue $\lambda=2$.
7. Let $\mathbf{D}=\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]$. Compute \mathbf{D}^{9}.

9. The Cayley-Hamilton theorem states that a matrix satisfies its characteristic polynomial, i.e. \mathbf{A} is an $\mathrm{n} \times \mathrm{n}$ matrix with characteristic polynomial $\mathrm{p}_{\mathrm{n}}(\lambda)=\operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{\mathrm{n}}\right)$ such that $p_{n}(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n-1} \lambda+a_{n}$, then $\mathbf{A}^{n}+a_{1} \mathbf{A}^{n-1}+\ldots+a_{n-1} \mathbf{A}+a_{n} \mathbf{I}_{n}=\mathbf{0}$. Verify the Cayley Hamilton theorem for the following matrices:

$$
\text { (a) }\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 2 & 2 \\
0 & 0 & -3
\end{array}\right], \quad \text { (b) }\left[\begin{array}{ll}
3 & 3 \\
2 & 4
\end{array}\right] \text {. }
$$

10. \boldsymbol{A} is an $n \times n$ matrix whose charateristic polynomial is $p_{n}(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n-1} \lambda+a_{n}$. If A is nonsingular, show that $\mathbf{A}^{-1}=\frac{1}{a_{n}}\left(\mathbf{A}^{n-1}+a_{1} \mathbf{A}^{n-2}+\ldots+a_{n-2} \mathbf{A}+a_{n-1} \mathbf{I}_{n}\right)$. How is the relation $\mathrm{a}_{\mathrm{n}}=\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{n}}=\operatorname{det}(\mathbf{A})$ connected to the existence of \mathbf{A}^{-1} ?
11. Verify that $\mathbf{Q}=\left[\begin{array}{ccc}\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3}\end{array}\right]$ is an orthogonal matrix and find its inverse.
12. Find a third column so that the matrix $\mathbf{Q}=\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} & \text { ? } \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} & \text { ? } \\ \frac{1}{\sqrt{3}} & \frac{-3}{\sqrt{14}} & \text { ? }\end{array}\right]$ is orthogonal. Hint: Construct orthonormal column vectors.
13. Diagonalize each given matrix and find an orthogonal matrix \mathbf{Q} that $\mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q}$ is diagonal.
(a) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$,
(b) $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2\end{array}\right]$,
(c) $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
14. Apply the Gram-Schmidt orthogonalization process to $\mathbf{u}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{w}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ to construct an orthonormal set of vectors $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$. Can you write the result in the form of $\mathbf{A}=\mathbf{Q R}$ where $\mathbf{A}=\left[\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}\end{array}\right], \mathbf{Q}=\left[\begin{array}{lll}\mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{3}\end{array}\right]$ and \mathbf{R} is an upper-triangular matrix?
15. Write each of the following quadratic forms in their canonical forms:
(a) $g(x, y)=-3 x^{2}+5 x y-2 y^{2}$,
(b) $g(x, y, z)=2 x^{2}+3 x y-5 x z+7 y z$,
(c) $g(x, y, z)=3 x^{2}+x y-2 x z+y^{2}-4 y z-2 z^{2}$.
16. Find the general solution of the differential equations as applications of eigenproblem:

$$
\text { (a) }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & -4 & 3 \\
0 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \text { (b) } \quad x^{\prime \prime \prime}-3 x^{\prime \prime}-10 x^{\prime}+24 x=0 .
$$

