PROBLEMS

1. Determine whether the three vectors in \mathbf{R}^{3} are linearly dependent or independent: $3 i+6 j-k, 8 i+2 j-4 k, i-j+k$.
2. Let S be the set of all vectors parallel to the hyper-plane $4 x+2 y-z+3 r=0$ in \mathbf{R}^{4}.
(a) Show that S is a subspace, (b) Determine a basis for S, (c) Find its dimension.

Hint: $\mathrm{S}=\left\{\mathbf{u}=(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{r}) \in \mathbf{R}^{4} \mid 4 \mathrm{x}+2 \mathrm{y}-\mathrm{z}+3 \mathrm{r}=0\right\}$.
3. Let $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{cc}2 & -1 \\ -3 & 4\end{array}\right]$. Show that $\mathbf{A B} \neq \mathbf{B} \mathbf{A}$.
4. Show that the jth column of the matrix product $\mathbf{A B}$ is equal to the matrix product $\mathbf{A B} \mathbf{B}_{\mathrm{j}}$, where \mathbf{B}_{j} is the jth column of \mathbf{B}.
5. Show that if $\mathbf{A X}=\mathbf{B}$ has more than one solution, then it has infinitely many solutions. (Hint: If \mathbf{X}_{1} and \mathbf{X}_{2} are solutions, consider $\mathbf{X}_{3}=\alpha \mathbf{X}_{1}+\beta \mathbf{X}_{2}$ where $\alpha+\beta=1$.)
6. Let \mathbf{A} be a fixed $\mathrm{m} \times \mathrm{n}$ matrix and define W to be the solution space of the homogeneous system $\mathbf{A X}=\mathbf{0}$, i.e. $\mathrm{W}=\left\{\mathbf{X} \in \mathbf{R}^{\mathrm{n}} \mid \mathbf{A X}=\mathbf{0}\right\}$. Show that W is a subspace of \mathbf{R}^{n} and write down its dimension. Hint: See dimension of the Solution Space.
7. Given the matrix $\mathbf{A}=\left(\begin{array}{llll}1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4\end{array}\right)$, determine: (a) a basis for its column space, (b) a basis for its row space of \mathbf{A}, (c) the rank of \mathbf{A}. Hint: Reduce (a) \mathbf{A}^{T} and (b) \mathbf{A}.
8. In the following linear system, determine all values of a for which the resulting linear system has: (a) No solution, (b) Infinitely many solutions, (c) A unique solution.

$$
\begin{aligned}
\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3} & =2 \\
\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} & =3(\text { Ans: }-2 ; 2 ; \neq \pm 2) \\
\mathrm{x}_{1}+\mathrm{x}_{2}+\left(\mathrm{a}^{2}-5\right) \mathrm{x}_{3} & =\mathrm{a}
\end{aligned}
$$

9. Find all values of a for which the following linear systems have solutions.

$$
\begin{array}{rlrl}
\mathrm{x}+2 \mathrm{y}+\mathrm{z} & =\mathrm{a}^{2} & \mathrm{x}+2 \mathrm{y}+\mathrm{z} & =\mathrm{a}^{2} \\
\text { (i) } \left.\begin{array}{rl}
\mathrm{x}+\mathrm{y}+3 \mathrm{z} & =\mathrm{a}
\end{array} \quad \text { (Ans: -4 or } 2\right) & \text { (ii) } \begin{aligned}
\mathrm{x}+\mathrm{y}+3 \mathrm{z} & =\mathrm{a} \\
3 \mathrm{x}+4 \mathrm{y}+7 \mathrm{z} & =8
\end{aligned} \quad \text { (Ans: any real number) } \\
3 \mathrm{x}+4 \mathrm{y}+8 \mathrm{z} & =8
\end{array}
$$

10. Find all values of a for which the following homogeneous system has nontrivial solutions:

$$
\text { (i) } \begin{aligned}
(1-a) x+z & =0 \\
a y+z & =0(\text { Ans: } 1) \\
y-a z & =0
\end{aligned}
$$

11. Consider the two matrices $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 0 & 3\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{c}10 \\ 4 \\ 6\end{array}\right]$.
(a) Find the reduced form \mathbf{A}_{r} and produce a matrix $\boldsymbol{\Omega}$ such that $\boldsymbol{\Omega} \mathbf{A}=\mathbf{A}_{\mathrm{r}}$.
(b) Use $\boldsymbol{\Omega}$ computed above to solve $\mathbf{A X}=\mathbf{B}$ for \mathbf{X}. Hint: Use the fact that $\mathbf{A}_{\mathrm{t}}=\mathbf{I}_{3}$.
12. Let $\mathbf{u}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ be given in \mathbf{R}^{3}. Determine whether if the vector $\mathbf{u}=\left[\begin{array}{c}0 \\ -2 \\ 4\end{array}\right]$ belongs to the subspace spanned by $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$, i.e. determine whether if scalars $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}$ exist such that $\mathbf{u}=\mathrm{c}_{1} \mathbf{u}_{1}+\mathrm{c}_{2} \mathbf{u}_{2}+\mathrm{c}_{3} \mathbf{u}_{3}+\mathrm{c}_{4} \mathbf{u}_{4}$.

Hint: Construct a system $\mathbf{A X}=\mathbf{B}$ and show solution exists.
13. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. Find out whether $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ spans \mathbf{R}^{3}, i.e. any $\mathbf{u} \in \mathbf{R}^{3}$ can be written as $\mathbf{u}=\mathrm{c}_{1} \mathbf{u}_{1}+\mathrm{c}_{2} \mathbf{u}_{2}+\mathrm{c}_{3} \mathbf{u}_{3}$ for some scalars $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$.

Hint : (i) Solve a non-homogeneous system for any pick $\mathbf{u}=\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right]^{\mathrm{T}} \in \mathbf{R}^{3}$, or (ii) show whether $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a linearly independent set, so conclude whether it is a basis for \mathbf{R}^{3} or not, i.e. find $\operatorname{dim}\left\{\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}\right\}=3=\operatorname{dim}\left\{\mathbf{R}^{3}\right\}$ or not.
14. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right]$ be given in \mathbf{R}^{4}. Find a basis for the subspace S spanned by $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$, i.e. $\mathrm{S}=\left\{\mathbf{u} \in \mathbf{R}^{4} \mid \mathbf{u}=\mathrm{c}_{1} \mathbf{u}_{1}+\mathrm{c}_{2} \mathbf{u}_{2}+\mathrm{c}_{3} \mathbf{u}_{3}+\mathrm{c}_{4} \mathbf{u}_{4}\right\}$.

Hint: Form a matrix A and reduce.
15. For what values of a is the vector $\left[\begin{array}{c}\mathrm{a}^{2} \\ -3 \mathrm{a} \\ -2\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]\right\} ?$?(Ans: 1 or 2$)$
16. Suppose \mathbf{A} is an $\mathrm{m} \times \mathrm{n}$ matrix and define W to be the subset of all $\mathrm{m} \times 1$ matrices \mathbf{B} in \mathbf{R}^{m} for which the linear system $\mathbf{A X}=\mathbf{B}$ has a solution: (a) Is W a subspace of \mathbf{R}^{m} ? (b) What is the relationship between W and the column space of \mathbf{A} ?
Hint: Recall, $\operatorname{dim}\{$ col. space $\{\mathbf{A}\}\}=\operatorname{dim}\{$ col. space $\{\mathbf{A} \mid \mathbf{B}\}\}$ for existence of solution to $\mathbf{A X}=\mathbf{B}$.
17. Let \mathbf{A} be a fixed $\mathrm{m} \times \mathrm{n}$ matrix of rank r . Under what conditions on those numbers m, n, and r, does: (a) \mathbf{A} has an inverse? (b) $\mathbf{A X}=\mathbf{B}$ has infinitely many solutions for every \mathbf{B} in \mathbf{R}^{m} ? (c) $\mathbf{A X}=\mathbf{0}$ has $\mathbf{X}=\mathbf{0}$ (the trivial solution) as the only solution?
18. For a nonsingular square matrix \mathbf{A}, show that $\left[\mathbf{A} \mid \mathbf{A}^{2}\right]_{\mathrm{r}}=[\mathbf{I} \mid \mathbf{A}]$. $\underline{\text { Hint: }}[\mathbf{A} \mid \mathbf{I}]_{\mathrm{f}}=\left[\mathbf{I} \mid \mathbf{A}^{-1}\right]$.

