PROBLEMS

- 1. Determine whether the three vectors in \mathbf{R}^3 are linearly dependent or independent: 3i+6j-k, 8i+2j-4k, i-j+k.
- 2. Let S be the set of all vectors parallel to the hyper-plane 4x + 2y z + 3r = 0 in \mathbb{R}^4 .
 - (a) Show that S is a subspace, (b) Determine a basis for S, (c) Find its dimension.

<u>Hint</u>: $S = \{ \mathbf{u} = (x, y, z, r) \in \mathbf{R}^4 \mid 4x + 2y - z + 3r = 0 \}$.

- 3. Let $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 2 & -1 \\ -3 & 4 \end{bmatrix}$. Show that $\mathbf{AB} \neq \mathbf{BA}$.
- 4. Show that the jth column of the matrix product \mathbf{AB} is equal to the matrix product \mathbf{AB}_{j} , where \mathbf{B}_{i} is the jth column of \mathbf{B} .
- 5. Show that if $\mathbf{A}\mathbf{X} = \mathbf{B}$ has more than one solution, then it has infinitely many solutions. (Hint: If \mathbf{X}_1 and \mathbf{X}_2 are solutions, consider $\mathbf{X}_3 = \alpha \mathbf{X}_1 + \beta \mathbf{X}_2$ where $\alpha + \beta = 1$.)
- 6. Let **A** be a fixed $m \times n$ matrix and define W to be the solution space of the homogeneous system $\mathbf{AX} = \mathbf{0}$, i.e. $\mathbf{W} = \left\{ \mathbf{X} \in \mathbf{R}^n \mid \mathbf{AX} = \mathbf{0} \right\}$. Show that W is a subspace of \mathbf{R}^n and write down its dimension. Hint: See dimension of the Solution Space.
- 7. Given the matrix $\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{pmatrix}$, determine: (a) a basis for its column space, (b) a basis

for its row space of A, (c) the rank of A. Hint: Reduce (a) A^T and (b) A.

8. In the following linear system, determine all values of a for which the resulting linear system has: (a) No solution, (b) Infinitely many solutions, (c) A unique solution.

$$x_1 + x_2 - x_3 = 2$$

 $x_1 + 2x_2 + x_3 = 3$ (Ans: -2; 2; $\neq \pm 2$)
 $x_1 + x_2 + (a^2 - 5)x_3 = a$

9. Find all values of a for which the following linear systems have solutions.

$$x+2y+z=a^2$$
 $x+2y+z=a^2$ (i) $x+y+3z=a$ (Ans: -4 or 2) (ii) $x+y+3z=a$ (Ans: any real number) $3x+4y+7z=8$ $3x+4y+8z=8$

10. Find all values of a for which the following homogeneous system has nontrivial solutions:

$$(1-a)x + z = 0$$
(i)
$$ay + z = 0 (\underline{\text{Ans}}: 1)$$

$$y - az = 0$$

- 11. Consider the two matrices $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 10 \\ 4 \\ 6 \end{bmatrix}$.
 - (a) Find the reduced form A_r and produce a matrix Ω such that $\Omega A = A_r$.

(b) Use Ω computed above to solve AX = B for X. Hint: Use the fact that $A_r = I_3$.

12. Let
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ be given in \mathbf{R}^3 . Determine whether if the

vector $\mathbf{u} = \begin{bmatrix} 0 \\ -2 \\ 4 \end{bmatrix}$ belongs to the subspace spanned by $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$, i.e. determine

whether if scalars c_1, c_2, c_3, c_4 exist such that $\mathbf{u} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4$.

<u>Hint</u>: Construct a system AX = B and show solution exists.

13. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. Find out whether $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ spans \mathbf{R}^3 , i.e. any $\mathbf{u} \in \mathbf{R}^3$

can be written as $\mathbf{u} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3$ for some scalars c_1, c_2, c_3 .

<u>Hint</u>: (i) Solve a non-homogeneous system for any pick $\mathbf{u} = \begin{bmatrix} a & b & c \end{bmatrix}^T \in \mathbf{R}^3$, or (ii) show whether $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly independent set, so conclude whether it is a basis for \mathbf{R}^3 or not, i.e. find dim{span{ $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ }} = $3 = \dim\{\mathbf{R}^3\}$ or not.

14. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ be given in \mathbf{R}^4 . Find a basis for the subspace

S spanned by $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$, i.e. $S = \{\mathbf{u} \in \mathbf{R}^4 \mid \mathbf{u} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 \}$.

<u>Hint</u>: Form a matrix **A** and reduce.

- 15. For what values of a is the vector $\begin{bmatrix} a^2 \\ -3a \\ -2 \end{bmatrix}$ in span $\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} \right\}$? (Ans: 1 or 2)
- 16. Suppose **A** is an $m \times n$ matrix and define W to be the subset of all $m \times 1$ matrices **B** in \mathbb{R}^m for which the linear system $\mathbf{AX} = \mathbf{B}$ has a solution: (a) Is W a subspace of \mathbb{R}^m ? (b) What is the relationship between W and the column space of **A**?

<u>Hint</u>: Recall, dim{col. space{A}} = dim{col. space{ $A \mid B$ }} for existence of solution to AX = B.

- 17. Let **A** be a fixed m×n matrix of rank r. Under what conditions on those numbers m, n, and r, does: (a) **A** has an inverse? (b) $\mathbf{AX} = \mathbf{B}$ has infinitely many solutions for every **B** in \mathbf{R}^{m} ? (c) $\mathbf{AX} = \mathbf{0}$ has $\mathbf{X} = \mathbf{0}$ (the trivial solution) as the only solution?
- 18. For a nonsingular square matrix \mathbf{A} , show that $[\mathbf{A} | \mathbf{A}^2]_r = [\mathbf{I} | \mathbf{A}]$. Hint: $[\mathbf{A} | \mathbf{I}]_r = [\mathbf{I} | \mathbf{A}^{-1}]$.