PROBLEMS

- **1.** Let **F** be any non-zero vector. Determine a scalar t such that $||t\mathbf{F}|| = 1$.
- 2. Let **F**, **G** and **H** be nonzero vectors, each orthogonal to the other two. Let **A** be any vector. Find the scalars α , β , γ such that $\mathbf{A} = \alpha \mathbf{F} + \beta \mathbf{G} + \gamma \mathbf{H}$. Hint: Consider $\mathbf{A} \cdot \mathbf{F}$, $\mathbf{A} \cdot \mathbf{G}$, $\mathbf{A} \cdot \mathbf{H}$.
- **3.** Determine whether the three points P(-1, 1, 6), Q(2, 0, 1), R(3, 0, 0) are collinear, i.e. all three lie on a straight line. Ans.: No, Hint: $\mathbf{u} \times \mathbf{v} = \mathbf{0} \iff \mathbf{u} || \mathbf{v}$.
- **4.** Show that for $r \neq 0$ where $\mathbf{r} = (x, y, z)$ and $r = ||\mathbf{r}||$:

(a)
$$\nabla(\frac{1}{r^n}) = -\frac{n}{r^{n+2}}\mathbf{r};$$
 (b) $\nabla \cdot (\frac{1}{r^n}\mathbf{r}) = \frac{(3-n)}{r^n};$ (c) $\nabla \times (\frac{1}{r^n}\mathbf{r}) = \mathbf{0}.$

Hint : Some useful formulas of vector analysis

- (i) $\nabla(fg) = f\nabla(g) + g\nabla(f)$, (ii) $\nabla(f/g) = (g\nabla(f) f\nabla(g))/g^2$ at points where $g(x) \neq 0$
- (iii) $\nabla \cdot (\mathbf{f} \mathbf{F}) = \mathbf{f} \nabla \cdot (\mathbf{F}) + \mathbf{F} \cdot \nabla (\mathbf{f})$, (iv) $\nabla \times (\mathbf{f} \mathbf{F}) = \mathbf{f} \nabla \times (\mathbf{F}) + \nabla (\mathbf{f}) \times \mathbf{F}$
- 5. Let the curve C have the parametric equations: $x = \sin t$, $y = \cos t$, z = 45t for $0 \le t \le 2\pi$.
 - (a) Write the position vector $\mathbf{R}(t)$ and tangent vector for C,
 - (**b**) Find a length function s(t) for this curve, i.e. $s(t) = \int_{0}^{t} ds$
 - (c) Write the position vector as a function of the arclength s, $\mathbf{R}(s)$
 - (d) Verify that the resulting position vector $\mathbf{R}(s)$ has a derivative of length 1.
- 6. Construct a vector field whose streamlines are straight lines.
- 7. Suppose $\nabla \phi = \mathbf{i} + \mathbf{k}$. What can be said about level surfaces of the scalar field ϕ ? Show that the streamlines of the vector field $\nabla \phi$ are orthogonal to the level surfaces of ϕ . Hint: $\mathbf{N} = \nabla \phi$ is constant.
- 8. Suppose a particle following the path $\mathbf{R}(t) = (t^2, t^3 4t, 0)$ flies off on a tangent at t = 2. Compute the position of the particle at t = 3. Ans.: (8,8,0)
- 9. What is the distance from the point Q(9,4,5) to the line x = 1 + t, y = 1 + 2t, z = 3 + 2t?
 (a) Use vector operations, i.e. consider the distance as the component of the vector u = PQ perpendicular
 - to the line where P is any point on the line. Ans.: $\sqrt{41}$
 - (**b**) Use calculus, i,e, minimize $(x-9)^2 + (y-4)^2 + (z-5)^2$.
 - (c) Which point A(x,y,z) on the line is closest to the point Q? Ans.: A(3,5,7)
- **10.** (a) Find an equation for the line $\mathbf{R}(t)$ through P(0,2, 1) and Q(1,3,3).
 - (b) What is an equation for the line segment between P and Q (not beyond)?
 - (c) What is an equation for the line in terms of x, y, z without the parameter t?
 - (d) Which point on the line is closest to the origin? Ans.: A(-2/3,4/3,-1/3)
 - (e) Where does the line meet the plane x + y + z = 11? Ans.: (2,4,5)
 - (f) What line goes through A(3, 1, 1) perpendicular to the plane x y z = 1?
- **11.** Find parametric equations for the line starting from P(1,2,4) and passing through Q(5,5,4). Change the equations so the speed is 10. Change the start to Q. **Hint**: Use a new parameter τ that speed = $||\mathbf{d}\mathbf{R}/\mathbf{d}\tau|| = 10$.
- 12. (a) Change t so that the speed along the helix $\mathbf{R}(t) = (\cos t, \sin t, t)$ is 1 instead of $\sqrt{2}$. Call the new parameter s. Hint: Recall that for s arclength parameter, speed = $\|\mathbf{dR}/\mathbf{ds}\| = 1$.

(b) Find parametric equations to go around the unit circle with speed e^t starting from x = 1, y = 0. When is the circle completed? Hint: Use speed = $||d\mathbf{R}/dt|| = e^t$.

- 13. The surface of a lake is represented by a region D in the xy-plane such that the depth under the point (x, y) is $f(x, y) = 300 2x^2 3y^2$. In what direction should a swimmer at P(4,9) swim in order for the depth of the water to decrease most rapidly? Ans.: $\mathbf{u} = (8, 27, 0)/||(8, 27, 0)||$.
- **14.** Consider the temperature field $\phi(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ and a point P(1, $\sqrt{2}$,1):
 - (a) Determine at this point the maximum and minimum rate of change of temperature.
 - (b) Determine the equation of the level surface ($\phi(x, y, z) = c$) that passes through P and specified by ϕ .
 - (c) Find the equation of the tangent plane and normal line to the surface at the point P.
 - (d) Find the angle of intersection between the surface in (b) and the surface $z^2 + x^2 = 2$ at P. Ans.: 45°
- **15.** Find the equation of the plane, ax + by + cz = d, that
 - (a) is perpendicular to the vector $\mathbf{u} = (1,3,3)$ and passes through the point P(6,8,9).
 - (b) passes through the points P(1,3,8), Q(3,6,9) and R(1,6,0).
 - (c) is tangent to the surface $x^2 + y^3 z = c$ at the point P(9,8,6).
 - (d) contains the two vectors $\mathbf{u} = (1,1,-2)$, $\mathbf{v} = (-4,3,1)$ and the point P(1,1,1).
- 16. Find <u>an equation</u> of the plane that contains the two vectors $\mathbf{u} = (1,1,-2)$ and $\mathbf{v} = (-4,3,1)$. Construct a vector w that is perpendicular to \mathbf{u} and lives in the same plane with \mathbf{u} and \mathbf{v} . Ans.: $\mathbf{w} = (-1,1,0)$
- 17. Find the equation of the line, $\mathbf{R}(t) = (x_0 + tu_1, y_0 + tu_2, z_0 + tu_3)$, that
 - (a) is passing through the point P(5,0,4) and in the direction of the vector $\mathbf{u} = (1,5,1)$.
 - (b) is passing through the points P(1,0,4) and Q(1,0,5).
 - (c) is perpendicular to the surface $x^2 2y^3 + z^3 = c$ at the point P(0,1,4).
- **18.** Given the scalar field $f(x, y, z) = e^{x} + yz$, determine
 - (a) the directional derivative of f at the point P(6,2,1) in the direction of the vector $\mathbf{u} = (2,1,6)$.
 - (b) the direction along which f is increasing the fastest at the point P(1,1,3).
 - (c) the level surface f(x, y, z) = c that contains the point P(2,1,6).
 - (d) the direction perpendicular to the level surface in (c) at the point P.
- **19.** Given the vector field $\mathbf{F} = x^2 \mathbf{i} + 7y^2 \mathbf{j} 3z^2 \mathbf{k}$ and the scalar field $f(x, y, z) = 6x 2y + 2z^2$,
 - (a) verify that $\nabla \cdot (\nabla \times \mathbf{F}) = 0$, i.e. the divergence of a curl field vanishes.
 - (b) verify that $\nabla \times (\nabla f) = 0$, i.e. curl of a gradient field vanishes.
 - (c) find the particular streamline to the vector field **F** at the point P(2,1,7). Hint: Solve $dx/x^2 = dy/7y^2 = -dz/3z^2$, pairwise.
- **20.** Parametric equations for a curve is given by $x = 6t^2$, $y = 9t^2$, $z = t^2$.
 - (a) Write the position vector and tangent vector for the curve.
 - (**b**) Find the length of the curve for $1 \le t \le 9$. Ans.: $L = 80\sqrt{118}$.
- **21.** Let $f(x, y) = e^{xy} \sin(x + y)$.
 - (a) In what direction, starting at $P(0, \pi/2)$, is f changing the fastest? Ans.: u = (1, 0)
 - (b) In what directions starting at P(0, $\pi/2$) is f changing at 50% of its maximum rate? Ans.: $\mathbf{u} = (\frac{1}{2}, \pm \frac{\sqrt{3}}{2})$
 - (c) Let $\mathbf{c}(t)$ be a streamline of $\mathbf{F} = \operatorname{grad}(f)$ with $\mathbf{c}(0) = (0, \pi/2)$. Calculate $\frac{d}{dt} f(\mathbf{c}(t)) \Big|_{t=0}$. Ans.: $\pi^2/4$
- 22. Let $\mathbf{c}(t) = (\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t))$ be a path with $\|\mathbf{c}(t)\| = \text{constant}$; i.e., the curve lies on a sphere. Show that $\mathbf{c}'(t)$ is orthogonal to $\mathbf{c}(t)$.

- **23.** Recall that a curve $\mathbf{R}(s)$ parametrized in terms of arclength s satisfies $\|\mathbf{dR}/\mathbf{ds}\| = \|\mathbf{R}'(s)\| = 1$.
 - (a) Show that the unit vectors $\mathbf{v}_1(s) = \mathbf{R}'$, $\mathbf{v}_2(s) = \mathbf{R}'' / \|\mathbf{R}''\|$ and $\mathbf{v}_3(s) = \mathbf{v}_1 \times \mathbf{v}_2$ form an orthonormal set of vectors, namely,

$$\mathbf{v}_{n} \cdot \mathbf{v}_{m} = \delta_{nm} \equiv \begin{cases} 1 & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases}$$

for n, m = 1, 2, 3. They are called Frenet trihedron (Frenet, 1847) of moving orthogonal vectors. (b) Show that they satisfy the Formulas of Frenet:

$$\begin{aligned} \mathbf{v}_1' &= \kappa \mathbf{v}_2 \\ \mathbf{v}_2' &= -\kappa \mathbf{v}_1 + \tau \mathbf{v}_3 \\ \mathbf{v}_3' &= -\tau \mathbf{v}_2 \end{aligned}$$

where κ is called the curvature and τ is called the torsion (or twisting number) of the curve $\mathbf{R}(s)$. (c) Show that for a circular helix $\mathbf{R}(t) = (r \cos t, r \sin t, ct)$,

$$\kappa = \frac{r}{r^2 + c^2}$$
 and $\tau = \frac{c}{r^2 + c^2}$.

Thus verifying that τ may be taken as a measure of how much a curve deviates from a planar path, while κ measures deviation from a straight line path.