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Mean curve length: An efficient feature for brainwave biometrics 
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Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey   

A R T I C L E  I N F O   

Keywords: 
Biometrics 
Connectivity 
EEG 
Neural oscillations 
Nonlinearity 
Resting-state 

A B S T R A C T   

Electroencephalography (EEG) as a biometric modality has gained considerable interest in recent years. Many 
state-of-the-art methods have focused on increasing the recognition accuracy. However, the more complex and 
manipulative the methods become, the less practical and generalized they are in real-life applications. In this 
study, we prioritized computational efficiency and evaluated the model performance. In this direction, we 
propose the mean curve length (MCL), a simple measure quantifying signal complexity, which is analytically and 
empirically related to the Katz fractal dimension. By merely being the average of the absolute value of the first- 
order difference of a signal, MCL is arguably the most computationally efficient feature that can be extracted 
from an EEG signal. In this paper, we utilized it for person identification and authentication on a large standard 
dataset comprising 109 subjects under the eyes-open (EO) and eyes-closed (EC) resting state conditions. We 
employed a Mahalanobis distance-based classifier both for identification and authentication tasks. Our results 
indicate that in addition to its simplicity and low computational cost, MCL provides a remarkably high individual 
distinction as well. Specifically, recognition accuracies were 99.4% (EO) and 98.8% (EC) for identification, and 
for authentication, equal error percentages of 6.33% (EO) and 10.50% (EC) were obtained. Our study offers a fast 
and accurate neural biometric recognition scheme promising especially for practical real-world and real-time 
applications. It further proves the effectiveness of nonlinear signal measures in individual discrimination, and 
promotes shifting the focus beyond the conventional brain oscillatory and connectivity measures commonly 
fostered in EEG-based biometrics literature.   

1. Introduction 

Human brain contains the most intimate thoughts, memories and 
feelings of individuals, and hence carry firsthand information of per
sonal identities. This bestows a unique potential capability upon bio
metrics based on scalp electroencephalography (EEG). Being a 
continuous data source, EEG requires the subject to be present, alive and 
in a proper mental state to be valid, making it robust against identity 
theft and forgery. Based on the seven criteria defined in [1] — univer
sality, uniqueness, permanence, collectability, performance, accept
ability and circumvention — brainwaves hold medium to high scores in 
comparison to the other biometrics such as those obtained from DNA, 
face, fingerprint and iris [2]. Cutting-edge mobile, wearable and wire
less EEG systems with dry electrodes allow noninvasive real-time 
acquisition of brain signals by setting free any constraint on the move
ments of the subjects in their environment [3]. This surge in technology 
grants practicality as well as robustness to EEG systems for biometric 
recognition from the brain. 

There have been a wide range of studies on EEG biometrics in terms 
of features, classifiers, frequency bands, channel combinations and 
signal acquisition protocols [2]. The features that have been used in the 
state-of-the-art EEG-based biometrics can be divided into three cate
gories: univariate measures such as power spectral density (PSD) [4–6] 
and autoregressive (AR) model coefficients [7–9], bivariate functional 
connectivity measures [10] such as spectral coherence [6] and mutual 
information [11], and multivariate network measures including 
weighted nodal degree [12] and eigenvector centrality [13]. Amongst 
all, features based on brain oscillatory characteristics (spectral band 
activities), specifically the spectral connectivity measures that hold a 
superior performance [6,14], have been preferred in most of the studies, 
while features characterizing signal complexity and nonlinearity were 
rarely used. The studies employing signal complexity based features 
have used entropy measures [15–17], fractal dimension [17–19] and 1/f 
component of background PSD [20], being related to the fractal 
dimension [21]. 

Here, we propose a plain and computationally efficient measure, the 
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mean curve length (MCL), for EEG-based biometrics intimately related 
to the Katz fractal dimension (KFD) [22]. It is defined as the average of 
the absolute value of the first-order difference of a signal, making it one 
of the most computationally efficient features ever possible to be 
extracted from EEG signals. MCL is also the mean of curve length (CL), 
which was proposed and adopted as a feature for detection and pre
diction of seizures in epileptic patients [22–24]. Özkurt et al. [25] used a 
generalized form of it, called the short-time average magnitude differ
ence function (AMDF), for seizure detection, and compared its perfor
mance with conventional CL. For the case of AMDF, the difference can 
be computed with a selected delay instead of unity as in CL, which en
ables detection of changes in an extended number of frequencies. 
Because of this capability, AMDF has been used in speech signal pro
cessing for time-delay estimation and pitch detection [26–27]. A short- 
time AMDF was introduced by [28] in order to capture sleep spindle 
related regularities from sleep EEG signals. In [29], a more generalized 
form of AMDF was defined by adding an integer-wise degree in order to 
identify nonlinear properties with an application to Parkinson’s disease 
subcortical and cortical signals. Moreover in the same study, those 
generalized AMDF values were shown to be correlated with clinical 
motor symptoms. 

Classification methods for EEG-based biometrics have been realized 
under two major paradigms: i) conventional classifiers, in particular 
those based on distance (e.g., Euclidean) or similarity (e.g., Pearson’s 
correlation coefficient) [30–33] to some pre-stored user templates and 
ii) deep learning solutions, where convolutional neural networks (CNN) 
have often been employed [34–37]. While deep learning based classi
fiers automatically extract deep representations of features and gener
ally yield a superior performance, the gain in performance comes with a 
computational cost in turn. Moreover, instead of explicit templates, user 
data are implicitly stored within the trained network parameters. Hence, 
adding or removing a user requires the network model to be retrained. 
However in a template-based scheme, since the user records are explicit, 
one can easily add or remove them from the database. As the classifi
cation only involves finding distances or similarity measures in refer
ence to the templates, little to no training is required for the classifier. 
Due to the aforementioned reasons, a Mahalanobis distance-based 
classifier was chosen to be employed in our study. Mahalanobis dis
tance provides a computationally low-cost classifier that produces 
closed-form solutions, without any requirement for parameter tuning or 
optimization. There are limitations in computing the Mahalanobis dis
tance for high-dimensional features such as functional connectivity 
feature matrices. To address this problem and improve the overall 
classification performance, a modified version of the Mahalanobis dis
tance was implemented: the implicit data transformation within the 
definition of Mahalanobis distance was carried out explicitly, a dimen
sionality reduction step was added to the transformation and subse
quently the distance was computed. 

In this study, MCL was operated as a feature for EEG-based biometric 
identification and authentication on a large standard dataset. For the 
purpose of comparison, we also included KFD and some other highly 
discriminative features reported in the literature. Mahalanobis distance 
and a modified implementation for high-dimensional features were 
employed for classification. 

2. Materials and methods 

2.1. Dataset and preprocessing 

This study benefited from the publicly available PhysioNet EEG 
Motor Movement/Imagery Dataset [38], a frequently utilized database 
in EEG biometric studies [4–6,9,10,13,15,20,30,32,34–36,39–44]. It 
comprises EEG recordings from 109 participants in 14 experimental 
runs, including two baseline runs of resting state conditions with eyes- 
open (EO) and eyes-closed (EC), both lasting one minute. As EEG is 
known to be sensitive to human mental states [42,44], spontaneous 

brain data acquired during resting state have been mostly preferred for 
biometric recognition to keep the intra-individual variations in brain 
activity as low as possible. Thus in the current study, the EO and EC 
resting state data were used for the evaluation of the proposed 
methodology. 

Data were recorded using a BCI2000 system (http://www.bci2000. 
org) with 64 electrodes and a sampling rate of 160 Hz. Electrodes 
were arranged according to the international 10–10 system. All EEG 
signals were referenced to the average of the signals coming from 
earlobes. 

For each subject and condition, the recorded signals were split into 
six non-overlapping segments of 10 s to generate samples, five of them 
for training the model and one for testing it. A lowpass FIR filter with a 
cut-off frequency of 50 Hz was applied to each segment separately to 
eliminate the noise-ridden higher frequency components, including the 
60 Hz power line frequency and to retain the targeted dominant brain 
rhythmic activity. 

2.2. Feature extraction 

The main focus of this EEG-based biometric study is the mean curve 
length (MCL) that can be computed only by a summation operation 
applied on its discrete derivative (defined in Section 2.2.1). Its analytical 
simplicity enables great computationally efficiency, which is a desirable 
quality for implementing a practical biometric system. We also included 
several other features mainly for the purpose of comparison with MCL 
on the same dataset, particularly in terms of biometric recognition 
performance and computational efficiency. They comprise the highly 
discriminative features that have been commonly preferred in EEG 
biometric studies thus far, along with two popular fractal dimension 
estimators. 

In Section 2.2.2, we demonstrate what common characteristics MCL 
shares with a fractal dimension estimator, called the Katz Fractal 
Dimension (KFD). We also show their empirical similarity from their 
correlation using EEG data. In Section 2.2.3, we added up two other 
signal-complexity-based features: Higuchi’s fractal measure (HM) [45] 
and the aperiodic component of the power spectrum, i.e., the power-law 
exponent and offset of the 1/f background trend. The former is a popular 
fractal dimension estimator that has been used quite frequently in recent 
EEG signal pattern recognition studies for various cognitive and clinical 
applications (e.g., [46–48]). The latter feature, 1/f power-law exponent 

γ is linearly related to the fractal dimension
(

D =
5− γ

2

)

, which has been 

recently applied in EEG-based biometrics by [20]. The remaining fea
tures for comparison were chosen amongst the most commonly utilized 
EEG metrics of spectral band power and connectivity. These two feature 
types are supposed to quantify functional segregation and functional 

Table 1 
Computational complexities of MCL and other features in terms of feature vector 
size, average number of principal components over subjects and conditions (only 
for PLV, COH and AR), average runtime over subjects and conditions and 
analytical time complexity (e = # of channels, t = # of time points, k = kmax 
maximum scale parameter for HM, p = order of the AR model). Features marked 
by † were incorporated with a dimensionality reduction corresponding to a 99% 
retained variance in their classification.  

Features Feature size (→Average # of principal 
components) 

Average 
runtime 

Complexity 

MCL 64 0.03 s O(e × t) 
KFD 64 0.07 s O(e × t) 
HM 64 0.38 s O(e × k2 × t) 
PSD 64 × 2 0.29 s O(e × t) 
AP 64 × 2 115.6 s O(e × t2) 
PLV† (64 × 63 / 2) × 2 → 250p.c. 2.3 s O(e2 × t) 
COH† (64 × 63 / 2) × 2 → 163p.c. 1.17 s O(e2 × t) 
AR† 64 × 5 → 56p.c. 0.14 s O(e × p × t)  
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integration of the brain [49], respectively. 
Table 1 exhibits the superior computational efficiency of MCL with 

respect to the aforementioned features. Specifically, it is more than 
twice faster than KFD. It is expectedly much faster than HM (more than 
12 times faster in our case) as the latter requires the computation of 
curve length for multiple times (quadratically proportional to the 
parameter of kmax, see Table 1) in different scales and fitting a straight 
line over them, which make it inherently more complex than MCL by 
definition. MCL is also two orders of magnitude faster than phase- 
locking value and spectral coherence, as it has a linear computational 
complexity with respect to the number of channels, opposed to the 
quadratic complexity of the functional connectivity metrics. 

2.2.1. Mean curve length (MCL) 
Curve length (CL) was originally proposed by Esteller et al. [22] as a 

computationally efficient substitute for the Katz fractal dimension [50]. 
As the name suggests, curve length is the sum of the linear distances 
between successive points on a curve. For the case of EEG, the so-called 
curve is basically equivalent to the signal trace. Since the time-axis 
contributes equally to the distances for a fixed sampling rate, it is not 
taken into account while computing CL. Hence, CL is the sum of the 
absolute value of the first-order finite difference (discrete derivative) for 
a time-series. Mean curve length (MCL) is simply obtained by averaging 
CL: 

MCL =
1

N − 1
∑N− 2

n=0
|Δ1x(n)| =

1
N − 1

∑N− 2

n=0
|x(n + 1) − x(n) | (1)  

where N is the signal length and n = 0, 1, …, N-1. Fig. 1 exhibits a visual 
illustration of MCL. 

2.2.2. Derivation of MCL from Katz fractal dimension (KFD) 
Katz [50] introduced a formulation for the fractal characterization of 

waveforms, which are two-dimensional curves that monotonically move 
forwards in one dimension (e.g., the time dimension). This can be 
especially useful for analyzing and comparing complex waveforms such 
as EEG signals. The fractal dimension D as defined by Katz [50] is given 
by. 

D = log(L)/log(d) (2)  

where L is the curve length in two dimensions and is defined as. 

L =
∑N− 2

n=0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x(n + 1) − x(n))2
+ Δt2

√

, (3)  

where Δt is the constant unit of time (i.e., the sampling period) and d is 

the curve diameter, defined as the farthest distance between the starting 
point and any other point on the curve: 

d = max
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x(n) − x(1))2
+ (t(n) − t(1))2

√

(4)  

for n = 0, 1, …, N-1. Notice that unlike MCL, the time-axis has to be taken 
into account for computing the Katz fractal dimension (KFD), since it 
does not equally contribute to the distances in Eq. (4). 

The ratio in Eq. (2) compares the actual length of the curve with the 
minimum length required to create a curve of the same spatial extent. 
Complex and convoluted curves tend to have higher fractal dimensions, 
since they can fit a long length within a small extension of space, i.e., 
they fill more of the space. 

Since arbitrary units of length for the definition in Eq. (2) produce 
different results, a standard unit denoted as a, describing the average 
distance between the successive points, was defined in order to 
normalize KFD [50]: 

D =
log(L/a)
log(d/a)

=
log(m)

log(m) + log(d/L)
(5)  

where m = L/a is the number of steps on the curve. Despite this 
normalization, the difference between the units of x- and y-axis is not 
taken into account for a typical time-series. This is important, because 
by considering a time-series as a geometrical object, different values of 
fractal dimension can still be generated by choosing arbitrary scales for 
the time and amplitude axes. 

The unit of time Δt has been treated differently in various imple
mentations of KFD. For instance, in one implementation [51], Δt was 
taken as unity, while in another [52], the time dimension was altogether 
ignored. It is helpful to understand the effect of this parameter by 
considering the extreme cases. When the unit of time goes towards the 
infinity, the relative size of signal amplitude becomes so negligible that 
any curve stretches into a virtually straight line with a fractal dimension 
of approximately one. In the other extreme when the unit of time is zero 
(i.e., KFD is computed in one dimension), the curve diameter would 
merely be the largest peak in a signal. This would lead to inconsistent 
results because of the inevitable variations in signal amplitude, partic
ularly caused by noise and the elimination of the normalization for 
signal length. In our own implementation, Δt was set to one to have a 
close but smaller magnitude than the average distance along the 
amplitude-axis (Eq. (3)) so that the effect of the latter remains dominant. 

Katz’s formulation of fractal dimension has an ambiguity with regard 
to time-series such as EEG signals, since the distances along the two 
dimensions have different units. In addition to that, some combinations 
of values for the parameters in Katz’s formulation (i.e., m, L and d in Eq. 
(5)) lead to inconsistent results [22]. To overcome these problems, 
Esteller et al. [22] proposed that the logarithms in Katz’s formulation 
could be dropped to obtain a more computationally efficient feature 
without compromising the detection capability. After eliminating the 
logarithmic functions in the numerator and denominator, Eq. (2) be
comes L/d. Here, d can be considered as a normalization factor, which 
does not change significantly among time segments of equal length, and 
hence can be taken as a constant. With d being a constant, L is no longer 
needed to be calculated in two dimensions (see Section 2.2.2), thus it 
would be equivalent to CL. Finally, substituting the number of steps n for 
the curve diameter d leads to the definition of MCL in Eq. (1). MCL is a 
well-defined measure computed in one dimension, avoiding the prob
lems of possibly singular or improper outputs [22] and dimensional unit 
inconsistency existent in KFD. We plotted MCL vs. KFD (Fig. 2) using the 
samples from all subjects in order to demonstrate the strong correlation 
(Pearson’s r = 0.96, p < 10-15) between these measures empirically. 

2.2.3. Other features 
The other features employed in this study are as follows: Higuchi’s 

measure (HM) [45], power spectral density (PSD) [5], aperiodic 
Fig. 1. An exemplary illustration of mean curve length that can be considered 
as the mean of absolute value of first-order finite difference (discrete derivative) 
of a signal. 
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component (AP) of PSD [20] and autoregressive (AR) coefficients [9]. In 
addition, we included two common cross-channel metrics of functional 
connectivity that quantify phase synchronization: phase-locking value 
(PLV) [42] and spectral coherence (COH) [6]. It has been shown that 
pairwise connectivity measures between channels may yield a better 
biometric recognition than single-channel spectral measures [6]. 

HM is known to be one of the popular fractal dimension estimators 
used in EEG classification studies [53–55]. In a comparative study of the 
fractal dimension estimators by Esteller et al. [56], they show that 
although HM yields the most accurate fractal dimension estimates for 
synthetic data, it is worse and less consistent than KFD in discriminating 
the brain states of epileptic patients. In another study for patients with 
encephalopathy [47], HM was reported to have a better discrimination 
ability than KFD. Hence, these studies suggest how the use and perfor
mance of fractal dimension measures are very much dependent on the 
specific data and application underhand. 

It is worth noting that HM does not correspond to the curve length as 
such, rather, it corresponds to the change of rate (slope) of the curve 
lengths in different scales for k = 1,…,kmax. That’s why it empirically 
correlated neither with MCL (r = 0.19), nor with KFD, strongly (r = 0.15; 
see Fig. S1 given in the Supplementary material). The discrepancy be
tween KFD and HM can also be sensed from the results reported by [56]. 
The choice of kmax is said to matter for the fractal dimension estimation 
[46]. Thus, we implemented and tried HM for kmax varying between 4 
and 16 and chose kmax = 6, which provided a relatively higher perfor
mance. Although, for our case, the performance did not change much 
with respect to kmax. 

In the EEG biometric studies that took advantage of the frequency 
band activities, higher frequency bands, beta and gamma in particular, 
were shown to contain the most distinctive information about in
dividuals [10,15,30], and were found to be the most robust bands for 
short-time data segments in a recent study [14]. Therefore, we extracted 
the PSD, PLV and COH features within the ranges of beta (12–30 Hz) and 
gamma (30–45 Hz) bands from the analytic signals, which were ob
tained by applying the Hilbert transform to the bandpass filtered signals. 
For each feature set, the estimates from these two bands were concate
nated to construct a single feature vector. 

PSD features were computed by taking the total power of the analytic 
bandpass filtered signals for each channel, and functional connectivity 
measures of PLV and COH were estimated between all pairs of channels 
(64 × 63/2 = 2016) [6,42]. Phase-locking value measures the 

consistency of the instantaneous phase difference between two signals, 
while spectral coherence also factors in the amplitudes of the signals in 
addition to their phase difference. Both PLV and COH range from zero to 
one, gradually indicating from non-synchrony to perfect synchrony be
tween two signals. 

AP features comprise the parameters of the power-law exponent 
linearly related to the fractal dimension and the offset. Both were esti
mated from a 1/f model fitted on the logarithmic scale of the power 
spectrum. The model for the aperiodic component is defined as L(f) = b – 
log(κ + f γ), where f, b, γ and κ denote frequency, offset, the power-law 
exponent and the knee parameter, respectively. We estimated b and γ 
using the Fitting Oscillations and One Over F (FOOOF) toolbox [57], which 
was specifically developed for the analysis of periodic and aperiodic 
properties of electrophysiological signals. First, the power spectrum of 
each data segment was estimated by Welch’s averaged periodogram 
method. As each segment was 10 s long, a Hanning window of 2 s with 
50 % overlap was applied. Subsequently, the estimated power spectral 
values were passed to FOOOF to obtain the parameters of power-law 
exponent and offset. The frequency range for curve fitting was set to 
1–40 Hz. 

AR features were estimated using Burg’s method for its lower 
computational complexity and better performance in comparison to the 
other AR parameter estimation techniques [2,8]. A model order of five 
was selected based on an EEG biometric study [9] which used the same 
dataset. Please note that all feature extraction procedures were per
formed using MATLAB (R2019b, The Mathworks, Inc., Natick, MA) on 
an Intel(R) Xeon(R) CPU E5- 2650 0 @ 2.00 GHz–2.00 GHz processor. 

2.3. Classification 

Mahalanobis distance-based classifier was employed both for iden
tification and authentication tasks, as it yields high performance [58], 
low computational cost and scores (distances) enabling applicability for 
authentication. Computing Mahalanobis distance requires the estima
tion of the inverse covariance matrix for each class (subject) distribu
tion. Since the number of samples for each class is small (five samples), 
the individual covariance matrices cannot be robustly estimated. To 
address this, we followed a common procedure consisting in approxi
mating the covariance matrix of each class to be equal to the covariance 
matrix computed from all classes [6], thus leading to only one covari
ance matrix stored in the database. Following this approach, for the n 
features of each feature set, an (n × n) covariance matrix was computed 
using 5 × 109 samples (5 segments and 109 subjects). After acquiring 
the inverse covariance matrix 

∑-1, the square Mahalanobis distance du, 

n
2 between an unidentified observation’s feature vector ηu and a class 

centroid μn was calculated as. 

d2
u,n = (ηu − μn)

T Σ− 1(ηu − μn) (6)  

where u, n ∈ {1, 2, …, C}, with C denoting the number of classes. Class 
centroids are the subject templates stored in the database during user 
registration. They are the feature vectors that are obtained by averaging 
the five sample feature vectors (corresponding to the five segments 
designated for training, as described in Section 2.1) for each subject. 

The observation is then predicted to belong to the class distribution 
with the minimum distance: 

n̂ = argminnd2
u,n (7) 

For authentication, a distance threshold was admitted, such that the 
observations within that distance were accepted as belonging to the 
authorized person, while the ones farther than that were rejected as 
impostors. An appropriate threshold can be determined by taking into 
account the trade-off between false acceptance/rejection rates (see 
Section 2.4). 

Mahalanobis classifier suffers from a deficiency with regard to high- 
dimensional features such as PLV and COH, as the covariance matrix can 

Fig. 2. KFD and MCL has high empirical correlation (r = 0.96, p < 10− 15). 
Samples (109 × 6 × 64) were pooled from all subjects, segments and channels. 
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become extremely large, possibly leading to a memory crash in a basic 
processor. Therefore, we modified the implementation of Mahalanobis 
distance in order to incorporate a dimensionality reduction. This was 
achieved by taking advantage of the fact that Mahalanobis distance is 
equivalent to Euclidean distance for a whitened distribution [59], thus 
allowing it to be computed in two separate steps: whitening the data and 
calculating the Euclidean distance. Whitening consists of decorrelating 
and standardizing features. Less important features, i.e., those with the 
least variances can be eliminated after decorrelating the data and before 
standardizing them (Fig. 3). We performed these steps via principal 
component analysis (PCA) and subsequently computed the Euclidean 
distances between the transformed feature vectors. This not only 
improved the computational efficiency by reducing the size of the 
feature vectors, but also increased the classification performance by 
helping to avoid the curse of dimensionality. 

For the features of AR, PLV and COH, a dimensionality reduction step 
was added to the whitening process, such that the retained components 
(i.e., the transformed features) contained 99 % of the variance of the 
original features. PCA can be a much faster alternative to deep learning 
[42] or exhaustive feature selection [6] while dealing with high- 
dimensional functional connectivity features. 

All classification procedures were implemented using the Scikit- 
learn library (https://www.scikit-learn.org) in Python 3. Codes for 
feature extraction and classification are available at https://github. 
com/RezaYahyaei/Paper2022. 

2.4. Evaluation 

For the evaluation of the proposed biometric system, we employed 
the standard metrics used in EEG-based biometrics literature [2]. Cor
rect recognition rate (CRR), which represents the fraction of correct 
identifications, was used to assess identification performances. CRR 
values were computed in a leave-one-out cross-validation fashion as 
follows: from the six segments corresponding to each subject, one was 
leaved out for testing the model and the remaining five segments were 
used for its training. This was carried out for all six combinations of 
train/test set split. Subsequently, the mean and standard deviation of the 
CRR values were computed over the six cross-validation iterations. 

Authentication performances are expressed in terms of the detection 
error trade-off (DET) curve, which depicts the trade-off between false 
rejection rate (FRR) and false acceptance rate (FAR) as a function of 
threshold. FRR is the fraction of rejections over all the access attempts by 
genuine users and FAR is the fraction of acceptances over all the access 
attempts by impostors. The point on a DET curve where the FRR and 
FAR values intersect is defined as the equal error rate (EER), which is a 
numeric metric of performance for authentication systems. Lower EER 
indicates better performance. 

To construct a DET curve, all pairwise distances are needed, together 
with the labels indicating whether they are intra-class (genuine match) 
or inter-class (impostor match) distances. This was realized within each 

cross-validation iteration, where all pairwise distances between the test 
set and the templates (generated during the training) were stored. The 
test set and the template set both consisted of 109 elements corre
sponding to the subjects. Thus for 6 runs, there were 6 × 109 genuine 
and 6×(109 × 108) impostor matches in total. 

3. Results 

3.1. Identification and authentication performance 

We evaluated the identification and authentication performances for 
MCL and the other included features. Identification was realized by 
assigning the observed data to the nearest existing class, while authen
tication was based upon deciding whether an observation belongs to a 
class or not, with respect to a distance threshold. A dimensionality 
reduction was incorporated into the classification pipeline for the fea
tures of PLV, COH and AR. The obtained performances per each feature 
are given in Table 2 in terms of the mean CRR ± the standard deviation 
of a 6-fold cross-validation for identification and EER for authentication. 

All features yielded comparably high performances of over 95 %. 
Specifically, a CRR of 99.4 ± 0.4 % in the EO condition and a slightly 
lower CRR of 98.8 ± 1.1 % in the EC condition were obtained for MCL, 
which were close to the CRRs obtained for KFD. Even though KFD and 
HM did not correlate well as fractal dimension estimators (see Section 
2.2), their identification and authentication performances were on a par. 
In general, the EO condition facilitated better identification perfor
mances than the EC condition, which is in line with literature 
[13,15,20,42]. 

Authentication performance was distinctively low only for the fea
tures of PSD and AP, with high EERs of more than 15 % (Fig. 4). For 
MCL, acceptable EERs of 6.29 % and 10.40 % were obtained, respec
tively for the EO and EC conditions. 

The conspicuous difference of within-subject and between-subject 
variances for all channels exhibited in Fig. 5 bears witness to the high 
biometric performances achieved with MCL. This is due to the unique 
correspondence of subjective brainwaves to MCL traces being almost 
indistinguishable for temporally different segments of the EEG signals as 
shown in Fig. 6. 

Please note that we tried out two conventional classifiers of multi
layer perceptron (MLP) neural network and support vector machine 
(SVM) to see how they compare with the suggested Mahalanobis 
distance-based classifier identification results. MLP yielded very similar 
and comparable performance, however it takes more computational 
time for training and testing than the Mahalanobis distance-based 
classifier does. SVM had a similar run time with Mahalanobis 
distance-based classifier, but its identification accuracies were lower. 
The details of implementation, classifier parameters and identification 
performances can be found out in the Supplementary Material. 

Fig. 3. Mahalanobis distance and its modified implementation.  

Table 2 
Identification and authentication performances of MCL and five other features in 
terms of CRR (mean ± standard deviation of 6-fold cross-validation) and ERR 
(corresponding to the DET curves in Fig. 4), respectively. Features marked by †
were incorporated with a dimensionality reduction corresponding to a 99% 
retained variance in their classification.   

Identification Authentication 

Features EO ACC EC ACC EO EER EC EER 

MCL 99.4 ± 0.4 % 98.8 ± 1.1 % 6.29 % 10.40 % 
KFD 99.4 ± 0.7 % 98.9 ± 1.2 % 3.31 % 6.19 % 
HM 99.5 ± 0.7 % 98.6 ± 1.0 % 3.50 % 6.12 % 
PSD (beta and gamma) 97.4 ± 1.4 % 95.9 ± 1.6 % 28.40 % 31.80 % 
AP (exponent and offset) 99.2 ± 0.6 % 99.2 ± 0.6 % 18.33 % 15.07 % 
PLV† (beta and gamma) 100.0 % 100.0 % 1.35 % 2.63 % 
COH† (beta and gamma) 100.0 % 99.8 ± 0.3 % 2.98 % 1.10 % 
AR† (5th order) 97.9 ± 2.8 % 97.6 ± 1.9 % 6.11 % 5.33 %  
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3.2. Channel contributions to identification 

We investigated channel contributions to the identification perfor
mance of MCL. A great overlap of signals between channels, hence 

redundancy of information, occurs for the scalp EEG because of the 
volume conduction effect. Each channel is expected to contribute to the 
performance depending also on its correlation with the other channels. 

We adopted the so-called recursive feature elimination (RFE) method 

Fig. 4. Detection error trade-off (DET) curves for all features in the authentication task. Mean curve length (bold blue curve) lies below PSD and AP, which indicates 
that it performs better than them in the authentication. It lies above KFD, PLV and COH, indicating a poorer performance. The intersection point between each curve 
and the EER identity line is the equal error rate of the corresponding feature. 

Fig. 5. Within-subject (black) and between-subject (red) variances of MCL for all channels in the (a) EO and (b) EC conditions. Subject 79 in EO and subjects 21 & 
103 in EC were excluded as outliers. 

Fig. 6. MCL feature vectors (corresponding to features from 64 channels) of different temporal segments for five arbitrary subjects. The conspicuous similarity over 
time per each subject demonstrates MCL as a discriminative biometric feature. 
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for ranking channels based on their contribution. At each step, the 
highest identification performance for the remaining channels was 
marked after removing one channel. We observed that the identification 
accuracy for both conditions kept stable as long as the number of 
channels was about more than 20 (Fig. 7(a)). The highest accuracies 
(even a bit more than the one using the full channel set) were achieved 
with a minimum of 19 channels in EO (99.8%) and 27 channels in EC 
(99.7%). 

Channels were ranked according to their elimination step, e.g., the 
lowest rank of 1 was assigned to the first removed channel, while the last 
one standing had the highest rank of 64. The topographical maps of the 
channel ranks shown in Fig. 7(b) hence indicate their contribution to the 
identification performance. The highest contributions mainly stemmed 
from the channels located at the parieto-occipital and temporal brain 
regions for both EO and EC conditions in accordance with recent liter
ature localizing the spectral neural fingerprints in source level [14]. 

3.3. Effect of using mismatched covariance matrix 

Retraining a Mahalanobis classifier consists in updating the covari
ance matrix and user templates when other users are needed to be either 
added to or removed from the database. We sought to investigate the 
degree of the importance of updating the covariance matrix in 

retraining. For this purpose, the robustness of the identification per
formance of MCL was questioned when a mismatched covariance matrix 
was employed for the classification. 

We divided the 109 subjects randomly into two exclusive groups of 
unequal size: 20 (group I) and 89 (group II) subjects. Within each group, 
the subjects were classified in three ways: by computing the Mahala
nobis distance (Eq. (6)) using the covariance matrix of i) the group itself, 
ii) the other group and iii) using no covariance matrix, i.e., the Euclidean 
distance. The average classification mean and standard deviation were 
obtained for a total of 500 random subject splits (Table 3). 

We found out that using a mismatched covariance matrix still yielded 
a significantly higher performance in both groups and conditions than 
using plain Euclidean distance. The reduction in the identification per
formance was less in group I than group II, indicating that utilizing a 
larger population for estimating the covariance matrix mitigated the 
performance deterioration from the mismatch. Furthermore for the EC 
condition, a more robust estimation of the covariance matrix facilitated 
a better performance for group II than group I. This is despite that group 
II contains more subjects to classify, hence performing significantly 
worse than group I when plain Euclidean distance is used. 

4. Discussion 

Nonlinear, higher order and complexity measures are notorious to 
have higher intricacy and to provide heavier computational costs as well 
as lesser interpretability of signals or systems underlying those signals. 
This is rather problematic for practical biomedical signal processing, 
particularly for the case of dense signals with high temporal resolution 
such as EEG, since efficiency is required for applicability to long data in 
short time and interpretability is desired to explain the mechanisms of 
the brain (in general, organs or biological systems). However for an 
unconventional metric, MCL is against the tide: it is simple, efficient, 
computationally cheap and descriptive. 

Our study demonstrated MCL as a high performance while vastly 
efficient feature, when compared to the other well-established and 
highly discriminative features regularly employed in the state-of-the-art 
EEG-based biometric systems. In fact, our methodology is computa
tionally so efficient, that it is fairly unconceivable to think of a metric 
simpler giving as much as high accuracy in identification of subjects 
from their cortical electrical activity. It should be noted that statistical 
measures of comparable simplicity such as power and variance do not 
provide the same level of individual distinction. Power spectrum and 
functional connectivity have provided the most preferred types of met
rics to interpret electrical brain activity in literature. Our study showed 
that much simpler means like MCL also proves to be capable of dis
tinguishing subject brains. 

The performance of MCL was validated by having significantly 

Fig. 7. (a) The maximum cross-validated identification accuracy via recursive 
feature elimination (RFE) was reached with a minimum of 19 channels (99.8%) 
and 27 channels (99.7%) in the EO and EC conditions, respectively. (b) Topo
graphical views of the channel ranks for the EO and EC conditions. The most 
discriminating features are at the parieto-occipital and temporal regions. 

Table 3 
Effect of using mismatched covariance matrices on MCL’s identification per
formance. The values are the average obtained from 500 random iterations.  

EO  

Group I 
Covariance Matrix 

Group II 
Covariance Matrix 

No Covariance 
Matrix (Euclidean) 

Group I (20 
subjects) 

99.5 ± 1.0 % 99.3 ± 1.1 % 97.3 ± 2.6 % 

Group II (89 
subjects) 

98.1 ± 1.1 % 99.3 ± 0.7 % 96.0 ± 1.6 %  

EC  
Group I 
Covariance Matrix 

Group II 
Covariance Matrix 

No Covariance 
Matrix (Euclidean) 

Group I (20 
subjects) 

98.5 ± 2.0 % 97.9 ± 2.0 % 94.1 ± 4.0 % 

Group II (89 
subjects) 

96.6 ± 1.3 % 98.7 ± 1.1 % 89.8 ± 3.0 %  
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higher variance of between-subject than that of within-subject. The 
recognition performance of the state-of-the-art EEG-based biometric 
systems have already reached a satisfactory level of more than 95 %. 
Thus, the focus is gradually shifting towards addressing other obstacles 
that hinder EEG from becoming an acceptable biometric modality in 
practice. Despite the tremendous progress in the computational power in 
the last decades, efficiency and memory load still remain to be crucial 
for minimizing the delay in real-time biometric applications. Many 
methods presented in the literature can simply be too complex and slow 
to be practically applied in continuous authentication systems. In this 
regard, the remarkable speed of computation grants MCL a unique 
advantage to be embedded in real-world and real-time mobile biometric 
systems that exploit EEG brain signals endowed with high temporal 
resolution. 

In addition to its computational efficiency, the implementation of 
MCL is also immensely easier, without the requirement of any special
ized programming libraries. This is in contrast to the reliance on band
pass filtering, data transformation, curve fitting and third-party 
functions to perform the sophisticated calculations for many other 
measures such as PSD, AP, AR and functional connectivity matrices of 
PLV and COH. Moreover, there are no required user-specific input pa
rameters in the computation of MCL. Whereas for most of the other 
features, there exist numerous estimation methods, basis functions and 
other filtering parameters to be selected, affecting the resultant perfor
mance. In addition to those parameters, there are multiple options for 
curve fitting for AP and a model order parameter for AR. In contrast, 
MCL is an accessible, easy-to-use feature for a naïve practitioner with no 
required consideration of intelligible inputs to the system, which should 
ideally reflect the characteristics of the underlying brain signals for 
accomplishing a proper estimation. 

In our methodology, we performed a minimal preprocessing, only 
filtering out the high-frequency components of EEG signals beyond the 
conventional spectral bands mainly dominated by noise. Sophisticated 
artifact removal preprocessing may sometimes turn out to be counter
productive, as it may distort the signal and reduce practicality in real-life 
applications. In fact, some artifacts were even found to be useful for 
subject discrimination. For example, volume conduction effect [6,10] 
and muscle activity in high-beta and gamma [13] were shown to be 
contributing to the subject classification performance. For the classifi
cation, we took a template-based scheme and employed Mahalanobis 
distance as a measure of dissimilarity. Our results indicated that this 
simplistic approach provides satisfactory performance while containing 
a lower computational complexity. In particular, the modified version of 
Mahalanobis classifier was shown to be an effective and much faster 
alternative to deep learning and analytical feature selection approaches 
for high-dimensional features. Retraining the classifier, when adding or 
removing a user, solely requires updating the covariance matrix, which 
is considerably cheaper (especially when the feature vector is small) 
than a full retraining required for most other classifiers. Our analysis has 
revealed that as long as enough samples from many subjects are used for 
the estimation of the covariance matrix, regardless of being authorized 
users or not, the classification performance does not significantly 
deteriorate. 

5. Conclusion 

Neural fingerprints do not need to be obtained solely through con
ventional spectral band activities or functional connectivity metrics. In 
this direction, we proposed and demonstrated the effectiveness of MCL 
as a promising feature for EEG-based biometric identification and 
authentication. Despite its simplicity, MCL provides a remarkably 
unique characterization of individual brainwaves. Being a discrimina
tive biometric feature in channel level together with its simplicity of 
formulation endows MCL with a powerful efficiency and capability 
desirable for real-time continuous brain biometrics. Our study indicates 
the potential usefulness of measures other than those derived from 

conventional EEG band activities and their functional interrelations and 
promotes further alternative analyses through exploiting the complexity 
of brainwaves. 
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