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Abstract. Let R be any commutative ring with unity and X a non-
singular compact real algebraic variety with a nonsingular projective
complexification i : X → XC. For a topological component X0 of
X we define KH∗(X0,R) as the kernel of the induced homomorphism
i∗ : H∗(X0,R) → H∗(XC,R) and ImH∗(X0,R) as the image of the ho-
momorphism i∗ : H∗(XC,R) → H∗(X0,R). In [6] the author showed
that both KH∗(X0,R) and ImH∗(X0,R) are independent of the com-
plexification X ⊆ XC and thus (entire rational) isomorphism invariants
of X provided that X0 is R-orientable. In this note the same result is
proved for non R-orientable X0 under the assumption that 2 ∈ R is a
unit. We have also some partial results for R = Z.

1. Introduction and the results

Let R be any commutative ring with unity. Let X be a nonsingular
compact real algebraic variety and i : X → XC be the inclusion map into
some nonsingular projective complexification. Define KH∗(X,R) as the
kernel of the induced map

i∗ : H∗(X,R) → H∗(XC,R)

on homology and ImH∗(X,R) as the image of the induced map

i∗ : H∗(XC,R) → H∗(X,R).

In [6] it is shown that if X is R-orientable then both KH∗(X,R) and
ImH∗(X,R) are independent of the complexification i : X → XC and thus
are (entire rational) isomorphism invariants of X (see also [3]). Indeed
the proof of this result enables us to define KH∗(X0,R) and ImH∗(X0,R)
for any R-orientable (metric) topological component X0 of the underlying
smooth manifold X. In other words, KH∗(X0,R) and ImH∗(X0,R) are
independent of the complexification as long as X0 is R-orientable.

Below is the main result of this note, which extends this result to non
R-orientable varieties.

Date: July 2, 2004.
2000 Mathematics Subject Classification. Primary 14P25, 14F25. Secondary 14E05.
Key words and phrases. Real algebraic varieties, complexification, algebraic homology,

entire rational maps.

1



2 YILDIRAY OZAN

Theorem 1.1. Let X0 be a topological component of any compact nonsingu-
lar real algebraic variety X and R is a commutative ring with unity. Then,
both KH∗(X0,R) and ImH∗(X0,R) are independent of the choice of the
smooth projective complexification i : X → XC provided that either X0 is
R-orientable or R contains 2 as a unit.

Even though this theorem excludes the case R = Z for nonorientable
topological component X0, we have some results in this case also. For any
positive integer n consider the exact sequence of Abelian groups

0 → Z ×n→ Z→ Zn → 0

and the corresponding Bockstein exact sequences for cohomology and ho-
mology (cf. see [4])

· · · → H i−1(X0,Zn)
β→ H i(X0,Z) ×n→ H i(X0,Z) → H i(X0,Zn)

β→ · · ·
and

· · · → Hi+1(X0,Zn)
β→ Hi(X0,Z) ×n→ Hi(X0,Z) → Hi(X0,Zn)

β→ · · · .

Theorem 1.2. Let X0 be a nonorientable topological component of a com-
pact nonsingular real algebraic variety X. Then, ImH i(X0,Z) ⊗ Q and
the image of the Bockstein homomorphism restricted to ImH i−1(X0,Zn),
β(ImH i−1(X0,Zn)), which is a subgroup of n-torsion elements in H i(X0,Z),
are independent of the complexification i : X → XC, provided that n = 2 or
is a positive odd integer.

Similarly for homology, KHi(X0,Z)⊗Q and the image of the Bockstein
homomorphism restricted to KHi+1(X0,Zn), β(KHi+1(X0,Zn)), which is a
subgroup of n-torsion elements in Hi(X0,Z), are independent of the com-
plexification i : X → XC, provided that n = 2 or is a positive odd integer.

2. Proofs

All real algebraic varieties under consideration in this report are nonsin-
gular. It is well known that real projective varieties are affine (Proposition
2.4.1 of [1] or Theorem 3.4.4 of [2]). Moreover, compact affine real algebraic
varieties are projective (Corollary 2.5.14 of [1]) and therefore, we will not
distinguish between real compact affine varieties and real projective vari-
eties.

For real algebraic varieties X ⊆ Rr and Y ⊆ Rs a map F : X → Y is
said to be entire rational if there exist fi, gi ∈ R[x1, . . . , xr], i = 1, . . . , s,
such that each gi vanishes nowhere on X and F = (f1/g1, . . . , fs/gs). We
say X and Y are isomorphic if there are entire rational maps F : X → Y
and G : Y → X such that F ◦ G = idY and G ◦ F = idX . Isomorphic
algebraic varieties will be regarded the same. We refer the reader for the
basic definitions and facts about real algebraic geometry to [1, 2].

We will only prove the statements of the above theorems involving co-
homology, because proof of the statements about homology are completely
analogous.
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Let X0 be a nonorientable topological component of a nonsingular real
algebraic variety X. Since X0 is nonorientable so is X. The smooth ori-
entation double cover of X is diffeomorphic to a nonsingular real algebraic
variety X̃, possibly not unique, on which the corresponding Z2 deck trans-
formation group acts algebraically and the quotient map p : X̃ → X is entire
rational. This can be seen as follows: The determinant line bundle of X is
(strongly) algebraic and is non trivial on X0. Hence, the f : X → RPN be
an entire rational map classifying this line bundle. Now, X̃ → X can be
taken to be the pull back of the algebraic double covering SN → RPN (cf.
see [7, 8]). Now, we have the following result:

Lemma 2.1. Assume that X is a nonsingular compact real algebraic vari-
ety and X0 a nonorientable topological component of X. Let i : X → XC
be any smooth projective complexification and p : X̃ → X any real alge-
braic orientation double cover as above. Then if R contains 2 as a unit then
(p∗)−1(ImH∗(X̃,R)) = ImH∗(X0,R). Moreover, ImH∗(X0,R) is indepen-
dent of the complexification.

One can easily state and prove the above lemma for homology.

Proof. Let i : X → XC be any fixed smooth projective complexification.
Then the entire rational covering map p : X̃ → X will extend to a ratio-
nal map, and after blowing up some smooth centers away from the real
locus, to some smooth projective complexification pC : X̃C → XC (possibly
a branched double covering projection) making the diagram below commu-
tative:

X̃0
j−→ X̃C

p ↓ ↓ pC

X0
i−→ XC

where X̃0 is p−1(X0), clearly a topological component of X̃. The Z2 action
on X̃ extends to an algebraic action on X̃C so that pC : X̃C → XC is a,
possibly branched, double covering, and the vertical maps are equivariant.
This diagram yields the following commutative diagram

H i(X̃C,R)
j∗−→ H i(X̃0,R)

p∗C ↑ ↑ p∗

H i(XC,R) i∗−→ H i(X0,R).

Since the smooth projective complexification i : X → XC is arbitrary the
commutativity of the above diagram implies that

ImH∗(X0,R) ⊆ (p∗)−1(ImH∗(X̃0,R)).

To see the other inclusion, let τ and τC denote the involutions of the Z2-
actions on X̃ and X̃C, respectively. It is well known that the vertical maps in
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the above diagrams are injective with images H i(X̃0,R)τ∗ and H i(X̃C,R)τ∗C ,
the subgroups of invariant classes (cf. see page 193 of [5]).

Note that to finish the proof of the first assertion we need to prove the
following : Let a ∈ H i(X0,R) be such that p∗(a) ∈ ImH i(X̃0,R). Then
a ∈ ImH i(X0,R). To prove this let b ∈ H i(X̃C,R) be such that j∗(b) =
p∗(a). By the above paragraph 2p∗(a) = j∗(b + τ∗C(b)) = p∗C(c), for some
c ∈ H i(XC,R). It follows from the commutativity of the above diagram and
the injectivity of p∗ that 2a = i∗(c). Since 2 is a unit we have a = i∗( c

2) ⊆
Im(i∗).

For the last assertion just note that the complexification i : X → XC is
arbitrary and independent from the choice of the double covering p : X̃ →
X. ¤

Note that Theorem 1.1 follows from the above Lemma 2.1.

Proof of Theorem 1.2. Consider the exact sequence of Abelian groups

0 → Z→ Q→ Q/Z → 0

and the corresponding Bockstein exact sequences for X0 and XC

· · · → H i−1(X0,Q/Z) → H i(X0,Z) → H i(X0,Q) → H i(X0,Q/Z) → · · ·
↑ i∗ ↑ i∗ ↑ i∗ ↑ i∗

· · · → H i−1(XC,Q/Z) → H i(XC,Z) → H i(XC,Q) → H i(XC,Q/Z) → · · · .

Tensoring the above sequences with Q and using Theorem 1.1 we get that
ImH i(X0,Z)⊗Q is independent of the complexification i : X → XC.

Now let us concentrate on torsion elements in H i(X0,Z). Let n be a
positive odd integer. Then 2 is a unit in Zn. Considering a similar diagram
as above corresponding to the short exact sequence of Abelian groups

0 → Z ×n→ Z→ Zn → 0

and the corresponding Bockstein sequences

· · · → H i−1(X0,Zn)
β→ H i(X0,Z) ×n→ H i(X0,Z) → H i(X0,Zn) → · · ·

↑ i∗ ↑ i∗ ↑ i∗ ↑ i∗

· · · → H i−1(XC,Zn)
β→ H i(XC,Z) ×n→ H i(XC,Z) → H i(XC,Zn) → · · ·

we deduce that the image of the Bockstein homomorphism restricted to
ImH i−1(X0,Zn), β(ImH i−1(X0,Zn)), which is a subgroup of n-torsion el-
ements in H i(X0,Z), is independent of the complexification i : X → XC by
Theorem 1.1. On the other hand, since Z2 is a field ImH i(X0,Z2) is also
independent of the complexification ([6]). Now using the exact sequence

0 → Z ×2→ Z→ Z2 → 0,
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in a similar fashion, we see that the image of the Bockstein homomorphism
restricted to β(ImH i−1(X0,Z2)), which is a subgroup of 2-torsion elements
in H i(X0,Z), is also independent of the complexification i : X → XC. ¤
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