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Abstract
Gödel-type metrics are introduced and used in producing charged dust solutions
in various dimensions. The key ingredient is a (D−1)-dimensional Riemannian
geometry which is then employed in constructing solutions to the Einstein–
Maxwell field equations with a dust distribution in D dimensions. The
only essential field equation in the procedure turns out to be the source-free
Maxwell’s equation in the relevant background. Similarly the geodesics of
this type of metric are described by the Lorentz force equation for a charged
particle in the lower dimensional geometry. It is explicitly shown with several
examples that Gödel-type metrics can be used in obtaining exact solutions to
various supergravity theories and in constructing spacetimes that contain both
closed timelike and closed null curves and that contain neither of these. Among
the solutions that can be established using non-flat backgrounds, such as the
Tangherlini metrics in (D − 1)-dimensions, there exists a class which can be
interpreted as describing black-hole-type objects in a Gödel-like universe.

PACS numbers: 04.20.Jb, 04.40.Nr, 04.50.+h, 04.65.+e

1. Introduction

Gödel’s metric [1] in general relativity is the solution of Einstein’s field equations with
homogeneous perfect fluid distribution having G5 maximal symmetry [2]. This spacetime
admits closed timelike and closed null curves but contains no closed timelike and null geodesics
[3]. The Gödel universe is geodesically complete, and does not contain any singularities or
horizons. There have been several attempts to generalize the Gödel metric in classical general
relativity [4–7]. The main goal of these works has been the elimination of closed timelike and
closed null curves.

We call a metric in D dimensions a Gödel-type metric if it can be written in the form
gµν = hµν − uµuν where uµ is a timelike unit vector and hµν is a degenerate matrix of
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rank D − 1 with the additional condition that hµν be the metric of an Einstein space of a
(D − 1)-dimensional Riemannian geometry.

In fact, taken at face value, such a decomposition of spacetime metrics has of course
been adopted by several researchers with various aims. These are generally called 3 + 1
decompositions in general relativity. One well-known work is due to Geroch [8] in D = 4
where our uµ is taken as uµ = ξµ/

√|λ| in which ξµ is a Killing vector field to start with
and λ = ξµξµ. However, Geroch does not put any restrictions on the three-dimensional
metric hµν unlike our case. Geroch reduces the vacuum Einstein’s field equations to a scalar,
complex, Ernst-type nonlinear differential equation and develops a technique for generating
new solutions of the vacuum Einstein field equations from vacuum spacetimes. Although the
Gödel-type metrics we define and use here are of the same type, it must be kept in mind that
our hµν is the metric of an Einstein space of a (D−1)-dimensional Riemannian geometry. We
also do not assume uµ to be a Killing vector field to start with, but with the other restrictions
we impose it turns out to be one. Another major difference is that we look for all possible
D-dimensional Gödel-type metrics, and hence uµ vectors, that produce physically acceptable
matter content for Einstein’s field equations.

Metrics of this form also look like the well-known Kerr–Schild metrics of classical
general relativity [9] which have gµν = ηµν − �µ�ν for a null vector �µ and which we have
recently used in constructing accelerated Kerr–Schild geometries for the Einstein–Maxwell
null dust [10], Einstein–Born–Infeld null dust field equations [11], and their extensions with
a cosmological constant and respective zero acceleration limits [12].

Remarkably the very form of the Gödel-type metrics is also reminiscent of the metrics
used in Kaluza–Klein reductions in string theories [13]. However, as will be apparent in
the subsequent sections, Gödel-type metrics have a number of characteristics that distinguish
them from the Kaluza–Klein metrics. Here the background metric hµν is taken as positive
definite whereas in the Kaluza–Klein case it must be locally Lorentzian. Moreover, contrary
to what is done in the Kaluza–Klein mechanism, the Gödel-type metrics are used in obtaining
a D-dimensional theory starting from a (D−1)-dimensional one. The D-dimensional timelike
vector uµ is used in the construction of a Maxwell theory in D dimensions unlike the Kaluza–
Klein vector potential which lives and defines a Maxwell theory in D − 1 dimensions. Even
though Gödel-type metrics are akin to metrics employed in the Kaluza–Klein mechanism at
face value, the applications we present here should make their real worth clear and should
help in contrasting them with Kaluza–Klein metrics.

Gödel-type metrics also show up in supergravity theories in some dimensions. A special
class of Gödel-type metrics is known to be the T-dual of the pp-wave metrics in string theory
[14–16]. These metrics are all supersymmetric but contain closed timelike and closed null
curves and thus violate causality [17–21]. Recently there has been an attempt to remedy this
problem by introducing observer-dependent holographic screens [15, 22]. In [23], a new class
of supergravity solutions has been constructed which locally look like the Gödel universe
inside a domain wall made out of supertubes and which do not contain any closed timelike
curves. There have also been studies that describe black holes embedded in Gödel spacetimes
[17, 19, 24] and brane-world generalizations of the Gödel universe [25].

In this work, we consider Gödel-type metrics in a D-dimensional spacetime manifold M.
We show that in all dimensions the Einstein equations are classically equivalent to the field
equations of general relativity with a charged dust source provided that a simple (D − 1)-
dimensional Euclidean source-free Maxwell’s equation is satisfied. The energy density of the
dust fluid is proportional to the Maxwell invariant F 2. We next show that the geodesics of the
Gödel-type metrics are described by solutions of the (D − 1)-dimensional Euclidean Lorentz
force equation for a charged particle. We then discuss the possible existence of examples
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of spacetimes containing closed timelike and closed null curves which violate causality and
examples of spacetimes without any closed timelike or closed null curves where causality
is preserved. We show that the Gödel-type metrics we introduce provide exact solutions to
various kinds of supergravity theories in five, six, eight, ten and eleven dimensions. All
these exact solutions are based on the vector field uµ which satisfies the (D − 1)-dimensional
Maxwell’s equation in the background of some (D − 1)-dimensional Riemannian geometry
with metric hµν . In this respect, we do not give only a specific solution but in fact provide
a whole class of exact solutions to each of the aforementioned theories. We construct some
explicit examples when hµν is trivially flat, i.e. the identity matrix of D − 1 dimensions.

We next consider an interesting class of the Gödel-type metrics by taking a (D − 1)-
dimensional non-flat background hµν . We specifically consider the cases when the background
hµν is conformally flat, an Einstein space and, as a subclass, a Riemannian Tangherlini solution.
We explicitly construct such examples for D = 4 even though these can be generalized to
dimensions D > 4 as well. When the background is an Einstein space, the corresponding
source for the Einstein equations in D dimensions turns out to be a charged perfect fluid
with pressure density p = 1

2 (3 − D)� (so that p > 0 when � < 0) and energy density
ρ = 1

4f 2 + 1
2 (D − 1)�, where � is the cosmological constant and f 2 denotes the Maxwell

invariant. We also discuss the existence of closed timelike and closed null curves in this class
of spacetimes and explicitly construct geometries with and without such curves in D = 4.
We show that when the background is a Riemannian Tangherlini space, the D-dimensional
solution turns out to describe a black-hole-type object depending on the parameters. We then
finish off with our conclusions and a discussion of possible future work.

2. Gödel-type metrics

Let M be a D-dimensional manifold with a metric of the form

gµν = hµν − uµuν. (1)

Here hµν is a degenerate D×D matrix with rank equal to D−1. We assume that the degeneracy
of hµν is caused by taking hkµ = 0, where xk is a fixed coordinate with 0 � k � D − 1
(note that xk does not necessarily have to be spatial), and by keeping the rest of hµν , i.e.
µ �= k or ν �= k, dependent on all the coordinates xα except xk so that ∂khµν = 0. Hence, in
the most general case, ‘the background’ hµν can effectively be thought of as the metric of a
(D −1)-dimensional non-flat spacetime. As for uµ, we assume that it is a timelike unit vector,
uµuµ = −1, and that uµ is independent of the fixed special coordinate xk , i.e. ∂kuµ = 0.
These imply that one can take uµ = − 1

uk
δ

µ

k .
Now the question we ask is as follows: let us start with a metric of form (1) and calculate

its Einstein tensor. Can the Einstein tensor be interpreted as describing the energy momentum
tensor of a physically acceptable source? Does one need further assumptions on hµν and/or
uµ so that ‘the left-hand side’ of Gµν ∼ Tµν can be thought of as giving an acceptable ‘right-
hand side’, i.e. corresponding to a physically reasonable matter source? As you will see in
the subsequent sections, the answer is ‘yes’ provided that one further demands hµν to be the
metric of an Einstein space of a (D − 1)-dimensional Riemannian geometry. We call such a
metric gµν a Gödel-type of metric. The sole reason we use this name is because of the fact that
some of the spacetimes we find also have closed timelike curves and some of the supergravity
solutions we present have already appeared in the literature with a title referring to Gödel.

In the most general case, uk �= constant and the assumptions we have made so far show
that uµ is not a Killing vector. However if one further takes uk = constant, then it turns out
to be one. Throughout this work we will assume that uk = constant. We will first consider
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the simple case of hµν being flat. For this case, we will examine what can be said and done in
classical general relativity in the remaining parts of this section and investigate how one can
use flat backgrounds to find solutions to various supergravity theories in section 3. We will
consider the case of non-flat backgrounds later in section 4.

2.1. Solutions of Einstein’s equations in flat backgrounds

Throughout the rest of this section and in section 3, we will further assume that h0µ = 0,

hij = δ̄ij , the (D − 1)-dimensional Kronecker delta symbol and ∂αhµν = 0. We take Greek
indices to run from 0, 1, . . . to D − 1 whereas Latin indices range from 1 to D − 1. (Our
conventions are similar to the conventions of Hawking and Ellis [3].) The determinant of gµν

is then g = −u2
0 and moreover uµ = − 1

u0
δ

µ

0 . In what follows, we will also assume that u0 = 1
and that ∂0uα = 0.

With these assumptions, it is not hard to show that uµhµν = 0 and the inverse of the
metric can be calculated to be

gµν = h̄µν + (−1 + h̄αβuαuβ)uµuν + uµ(h̄ναuα) + uν(h̄µαuα). (2)

Here h̄µν is the (D − 1)-dimensional inverse of hµν ; i.e. h̄µνhνα = δ̄µ
α with δ̄µ

α denoting the
(D − 1)-dimensional Kronecker delta: δµ

α = δ̄µ
α + δ

µ

0δ
0
α .

The Christoffel symbols can now be calculated to be

�µ
αβ = 1

2

(
uαf µ

β + uβf µ
α

) − 1
2uµ(uα,β + uβ,α) (3)

where we have used fαβ ≡ uβ,α − uα,β ; uα,β ≡ ∂βuα and f µ
ν = gµαfαν . We will also use a

semicolon to denote a covariant derivative with respect to the Christoffel symbols given above;
uα;β ≡ ∇βuα . One can easily show that uαuβ;α = 0 and uβ;α = 1

2fαβ , hence uµ is tangent to
a timelike geodesic curve and is a timelike Killing vector.

The Ricci tensor can be calculated to be

Rµν = 1
2fµ

αfνα − 1
2 (uµjν + uνjµ) + 1

4f 2uµuν (4)

where we have used f 2 ≡ f αβfαβ and jµ ≡ ∂αfµ
α . (Note that it is not possible to have

jµ = kuµ for a nontrivial constant k. Suppose the contrary is true, i.e. jµ = kuµµ f

µ
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A few remarks regarding the positivity of energy and the character of the geodesics are in
order at this point. For a timelike vector ξµ, one has T

f
µνξ

µξν � 0 by the very nature of T
f
µν

and since f0µ = 0, one has f 2 = (fij )
2 � 0 as well. Hence it is readily seen that

Gµνξ
µξν = T f

µνξ
µξν + 1

4f 2(uµξµ)2 � 0,

for all timelike ξµ and the weak energy condition is satisfied for spacetimes described by
Gödel-type metrics.

As for the behaviour of the geodesics, let us start by taking a geodesic curve � on M
which is parametrized as xµ(τ). Using (3) and denoting the derivative with respect to the
affine parameter τ by a dot, the geodesic equation yields

ẍµ + f µ
βẋβ(uαẋα) − uµẋα(uα,β ẋβ) = 0.

Noting that uα,β ẋβ = u̇α , writing f µ
β explicitly via the inverse of metric (2) and using

uαfµα = 0, this becomes

ẍµ + uαẋα(h̄µσ + uµh̄σνuν)fσβ ẋβ − uµ(u̇αẋα) = 0, (9)

and contracting this with uµ, one obtains a constant of motion for the geodesic equation as

uµẋµ = ẋ0 + uiẋ
i = −e = constant. (10)

Meanwhile setting the free index µ = i in (9), one also finds ẍi − e(h̄iσ fσβ ẋβ) = 0, or simply

ẍi = efij ẋ
j (i = 1, 2, . . . ,D − 1), (11)

i.e. the (D − 1)-dimensional Euclidean Lorentz force equation for a charged point particle of
charge/mass ratio equal to e. Moreover, contracting (11) further by ẋi , one obtains a second
constant of motion ẋi ẋi = �2 = constant. Since gµνẋ

µẋν = hµνẋ
µẋν − (uµẋµ)2 = �2 − e2,

one concludes that the nature of the geodesics necessarily depends on the sign of �2 − e2.
In retrospect, we have shown that the Gödel-type metric (1) solves the Einstein–Maxwell

dust field equations in D dimensions provided the flat (D − 1)-dimensional Euclidean source-
free Maxwell’s equation (7) holds. Moreover the geodesics of the Gödel-type metrics are
described by the (D − 1)-dimensional Euclidean Lorentz force equation (11).

2.2. A special solution to (7)

A solution to (7) is given by the simple choice ui = b
2Jij x

j , where b is a real constant (we keep
the 1/2 factor for later convenience), and Jij is fully antisymmetric with constant components
that satisfy

J k
jJ

i
k = −δi

j .

(Of course this is only possible when D is odd.) In this case, fij = bJij and f0µ = 0 as before.
Then fµ

αfνα = b2δ̄µν = b2hµν and f 2 = b2(D − 1). Using (4) and (5) with jµ = 0, the
Einstein tensor can be written as

Gµν = 1
8b2(5 − D)gµν + 1

4b2(D + 1)uµuν.

This in turn can be interpreted as coming from a perfect fluid source

Gµν = Tµν = pgµν + (p + ρ)uµuν

by identifying the pressure p of the fluid as p = 1
8b2(5 − D) and the mass–energy density ρ

with ρ = 3
8b2(D − 1). Note that in this picture p = 0 when D = 5 and p < 0 when D > 5.

Alternatively, one can repeat this analysis by writing

hµν = 1

b2
fµ

αfνα and uµuν = 1

b2
fµ

αfνα − gµν
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in (4). In this case the Einstein tensor can be written in the form

Gµν = D + 1

4

[
fµ

αfνα − 3

2(D + 1)
f 2gµν

]
.

If one is to consider this as an Einstein–Maxwell theory so that Gµν ∼ T
f
µν , then

3

2(D + 1)
= 1

4

which yields D = 5.
As a result, when D = 5 the special solution given above can either be thought of

as describing a spacetime filled with dust or as a solution to the Einstein–Maxwell theory.
However, in general odd dimensions it can be considered as a solution of Einstein theory
coupled with a perfect fluid source where the pressure p < 0 when D > 5.

2.3. Spacetimes containing closed timelike curves

In this subsection we give a simple solution which corresponds to a spacetime (1) that contains
closed timelike or null curves. Here we take D = 4 for simplicity but what follows can easily
be generalized to higher dimensions.

Obviously the simple choice ui = Qijx
j , where Qij is fully antisymmetric with constant

components (i, j = 1, 2, 3), solves (7). Now let Q13 = Q23 = 0 but Q12 �= 0 for simplicity.
Then

uµ dxµ = dt + Q12(x
2 dx1 − x1 dx2),

and employing the ordinary cylindrical coordinates (ρ, φ, z) this can be written as

uµ dxµ = dt − Q12ρ
2 dφ.

Using (1), this in turn implies that the line element is

ds2 = dρ2 + ρ2 dφ2 + dz2 − (dt − Q12ρ
2 dφ)2.

Consider the curve C = {(t, ρ, φ, z) | t = t0, ρ = ρ0, z = z0}, where t0, ρ0 and z0 are
constants, in the manifold M. The norm of the tangent vector vµ = (∂/∂φ)µ to this curve is
then

v2 ≡ vµvµ = gφφ = ρ2
0

(
1 − (Q12)

2ρ2
0

)
.

For a spacelike tangent vector, one has v2 > 0, of course. The spacetime we are studying
is obviously homogeneous and there passes a curve such as C from each point of such a
spacetime. Since φ is a periodic variable with φ = 0 and φ = 2π identified, one then clearly
finds that there exist closed timelike and null curves for ρ0 � 1/|Q12| in this spacetime since
then v2 � 0. One can also show that there exist no closed timelike or null geodesics in this
geometry.

2.4. Spacetimes without any closed timelike curves

In this subsection we present a solution which describes a spacetime (1) that does not contain
any closed timelike or null curves.

Now let ui = s(xj )ωi where ωi = δijωj is a constant vector and s is a smooth function
of the spatial coordinates xj (i, j = 1, 2, . . . ,D − 1). Hence fij = (∂is)ωj − (∂j s)ωi and (7)
gives

∂ifij = (∇2s)ωj − (∂i∂j s)ωi = 0.
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Then (7) is satisfied if one chooses ∇2s = 0 and ωi∂is = constant, which can further be set
equal to zero.

Now let us take D = 4 specifically, but the following discussion can of course be
generalized to D > 4 as well. As a simple example, choose ωi = δ3

i above. Then any function
s which is harmonic in the (x1, x2) variables will do. Now

uµ dxµ = dt + s(x1, x2) dx3,

and using the cylindrical coordinates again, the line element becomes

ds2 = dρ2 + ρ2 dφ2 + dz2 − (dt + s(ρ, φ) dz)2.

Consider the curve C and its tangent vector vµ we used in subsection 2.3 again. Now the
norm of vµ is

v2 = gφφ = ρ2
0 ,

and this is obviously always positive definite, v2 > 0, i.e. vµ is always spacelike. Hence we
see that the closed curve we used in the previous subsection is no longer timelike.

It is worth pointing out that the consideration of a curve of the form C̄ = {(t, ρ, φ, z) |
t = t0, ρ = ρ0, φ = φ0, z ∈ [0, 2π)}, where t0, ρ0 and φ0 are constants, and its tangent vector
v̄µ = (∂/∂z)µ gives

v̄2 = gzz = 1 − (s(ρ0, φ0))
2,

which at first sight indicates the existence of closed timelike or null curves in this geometry.
On the other hand, we do not confine ourselves to the small patch of spacetime where the z

coordinate is on S1, we are interested in the universal covering of this patch and thus take z to
be on the real line R.

We thus conclude that the solutions we present correspond to spacetimes that contain
both closed timelike and null curves and that contain neither of these depending on how one
solves (7).

3. Solutions of various supergravity theories with flat backgrounds

In this section, we use the results we have obtained so far in constructing solutions to some
supergravity theories in dimensions D � 5 with flat backgrounds.

3.1. Five dimensions

The bosonic part of the minimal supergravity in D = 5 has the following field equations
[18, 19]:

Rµν = 2
(
FµαFν

α − 1
6gµνF

2
) ⇔ Gµν = 2T F

µν, (12)

∇µFµν = 1

2
√

3
ηαβγµνFαβFγµ, (13)

where the Levi-Civita tensor η is given in terms of the Levi-Civita tensor density ε by
ηαβγµν = εαβγµν/

√−g.
Let Aµ = buµ, where b is a real constant. One then has Fµν = bf µν . Now let us

concentrate on (13) first. By (8), ∇µFµν = b
2f 2uν and since uν = −δν

0 , one finds that

∇µFµν = −b

2
f 2δν

0 .
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Now when ν = i, one of the first four indices of η on the right-hand side of (13) has to be 0
and since F0k = 0, (13) is satisfied identically in this case. When ν = 0,∇µFµ0 = − b

2f 2.
On the other hand, the right-hand side of (13) gives

1

2
√

3
εαβγµ0FαβFγµ = b2

2
√

3
εijklfij fkl

since
√−g = 1. So if one chooses fij to be further (anti) self-dual in Euclidean R

4, i.e.
fij = ± 1

2εijklfkl (in addition to condition (7)), then the right-hand side of (13) gives ± b2√
3
f 2

and comparing with the left-hand side, one finds b = ∓
√

3
2 .

Paraphrasing, (13) is satisfied provided b = ∓
√

3
2 , fµν satisfies (8) and fij is (anti)

self-dual in the Euclidean R
4 space. Such an fµν can easily be constructed by choosing

ui = Jij x
j (i, j = 1, 2, 3, 4), where all components of the fully antisymmetric Jij are constants

with J k
jJ

i
k = −δi

j , i.e. Jij defines an almost complex structure in R
4. Moreover, for fij to

be (anti) self-dual, Jij must itself be (anti) self-dual in R
4, i.e. Jij = ± 1

2εijklJkl .
With the special choice of ui as above,

T f
µν = 1

4f 2uµuν and T F
µν = b2T f

µν.

Looking back at (12) and using (6) of section 2.1, one finds that T
f
µν = 1

2(4b2−1)
f 2uµuν .

Comparing with the T
f
µν above, this again yields b = ∓

√
3

2 as before. In fact this solution is
supersymmetric [15, 16, 18, 19].

3.2. Six dimensions

In our conventions, the bosonic part of the D = 6, N = 2 supergravity theory [26] reduces
to the following field equations when all the scalars of the hypermatter φa and the 2-form
field Bµν in the theory are set to zero and when one assumes the dilaton ϕ to be constant with

µ ≡ e
√

2ϕ :

Rµν = 2µFµρFν
ρ + µ2GµρσGν

ρσ , (14)

∇µFµν − µGνρσ Fρσ = 0, (15)

∇µGµνρ = 0, (16)

1
3µGµνρG

µνρ + 1
2FµνF

µν = 0. (17)

Here all Greek indices run from 0 to 5 and Gµνρ is given by

Gµνρ = FµνAρ + FνρAµ + FρµAν (18)

and instead of a Yang–Mills field, we have taken an ordinary vector field Aµ to be present.
Let Aµ = λuµ, where λ is a real constant. Then (16) is satisfied identically since uµ =

−δ
µ

0 for our choice. One also finds that with this Aµ, GµνρG
µνρ = −3λ4f 2 and FF
µν=∼

4
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3.3. Eight dimensions

The bosonic part of the gauged D = 8, N = 1 supergravity theory coupled to n vector
multiplets [27] has field equations which are very similar to the field equations of D = 6,

N = 2 supergravity that we have examined in subsection 3.2. Taking an ordinary vector field
instead of a Yang–Mills field and setting the 2-form field BMN equal to zero (as was done in
subsection 3.2), one again has

GMNP = FMNAP + FNP AM + FPMAN, (19)

similarly to (18), where now capital Latin indices run from 0 to 7. We also set all the scalars in
the theory to zero but assume that the dilaton σ is constant with µ ≡ eσ . These assumptions
lead to the following field equations (see (26) of [27])

RMN = 2µFMP FN
P + µ2GMPSGN

PS, (20)

∇MFMN = µGNPSFPS, (21)

∇MGMNP = 0, (22)

2
9µ2GMNP GMNP + 1

3µFMNFMN = 0, (23)

which have the same form as (14), (15), (16) and (17), respectively.
Letting

gMN = hMN − uMuN

(as in section 2.1) and AM = λuM (with λ real), and following similar steps as in subsection 3.2,
it immediately follows that one obtains exact solutions to gauged D = 8, N = 1 supergravity
with matter couplings provided µλ2 = 1/2. Once again the conditions on uM under which
these solutions are supersymmetric should be studied further.

3.4. Ten dimensions

The following field equations can be obtained from a five-dimensional action which is itself
obtained by a Kaluza–Klein reduction of the type IIB supergravity theory with only a dilaton,
a Ramond–Ramond 2-form gauge potential and a graviton. (The details of the reduction
process, the corresponding splitting of the ten-dimensional coordinates and the metric ansatz
employed are explained in detail in [19] and we directly make use of the results of that article
here.)

∇µFµν = − 1
2HνρσFρσ , (24)

∇µHµνρ = 0, (25)

HµνρH
µνρ = −3FµνF

µν, (26)

Gµν = FµαFν
α − 1

4gµνF
αβFαβ + 1

4

(
HµαβHν

αβ − 1
6gµνHραβHραβ

)
. (27)

Here all Greek indices run from 0 to 4.
Note the striking resemblance of these equations to the equations of the D = 6, N = 2

supergravity theory of subsection 3.2. We want to see whether our Gödel-type metric ansatz
(1) and choice Aµ = λuµ, with λ a constant, solves equations (24)–(27). We take the 2-form
field B to be zero to that effect and following [19] find that Hµνρ is given by (H = −A ∧ dA)

Hµνρ = −(FµνAρ + FνρAµ + FρµAν)
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which already resembles the Gµνρ of subsection 3.2. Following similar steps to what was
done in subsection 3.2, one can easily show that our Gödel-type metric ansatz (1) and choice
of Aµ solve equations (24)–(27) provided that λ2 = 1.

Following the discussion of [19], if one further assumes that uµ is chosen in such a way
that the 3-form field H = − � dA, where � denotes Hodge duality with respect to the Gödel-
type metric (1), and that the gauge field A is rescaled as A → 2A/

√
3, this five-dimensional

solution can be further uplifted as the solution

ds2 = gµν dxµ dxν +
(
dy + 2√

3
Aµ dxµ

)2
+ ds2(T4), (28)

Ĥ = 2√
3

dA ∧ (
dy + 2√

3
A

) − 2√
3

� dA, (29)

of the type IIB supergravity theory. Here ds2(T4) is the metric on a flat four-torus and y

denotes one of the singled out extra dimensions. (See [19] for details.)

3.5. Eleven dimensions

The solution we gave in subsection 3.1 can also be uplifted to eleven dimensions as well [18].
The field equations for the bosonic part of D = 11 supergravity are as follows [28]:

RAB = 1
12

(
HACDEHB

CDE − 1
12H 2gAB

)
, (30)

∂A(
√−gHABCD) = 1

2(4!)2
εBCDMNKLPRST HMNKLHPRST . (31)

Here capital Latin indices run from 0 to 10. Now split the spacetime into xA = (xµ, xm)

where µ = 0, 1, 2, 3, 4 of subsection 3.1, m = 5, 6, . . . , 10 and let uA = (uµ, 0). With this
choice of uA, take the metric to be of Gödel-type (1) with

gAB = hAB − uAuB. (32)

Next define a 1-form field A as AA = kuA where k is a real constant. Then F = dA = kf

where f has components fµν as in subsection 3.1. Moreover one can also define a second
2-form F as

F = 2√
3
(dx5 ∧ dx6 + dx7 ∧ dx8 + dx9 ∧ dx10)

and the 3-form potential G as G = F ∧ A. Then the 4-form H = dG = kF ∧ f . Using the
property that FABf BC = 0, one then obtains

HACDEHB
CDE = 3k2

[
f 2FACFB

C + F2fACfB
C
]
.

Note that the way F is constructed implies that FACFB
C = 4

3δAB and F2 = 8. Substituting
these into (30), one gets

Rµ
ν = 2k2

[
f µσfνσ − 1

6f 2δ5
µ

ν

]
where δ5

µ
ν denotes the five-dimensional Kronecker delta. This is of exactly the same form as

(12) in D = 5. For the remaining field equation (31), first note that
√−g = 1 and

∂AHABCD = k(FBC∂Af AD + FDB∂Af AC + FCD∂Af AB) (33)

and the way F and f are constructed implies that only one of the terms on the right-hand side
of (33) survives, say for B = ν, C = 2a + 1,D = 2a + 2 (0 � ν � 4; 2 � a � 4). Then by
(8) and uµ = −δ

µ

0 , (31) is equivalent to

− k√
3
f 2δν

0 = 1

2(4!)2
εν2a+1 2a+2 MNKLPRST HMNKLHPRST . (34)
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When ν = i (1 � i � 4), one of the last eight indices of ε on the right-hand side of (34)
must be a 0 and since H0MNS = 0, (31) is satisfied identically in this case. When ν = 0,
the right-hand side of (34) has nonzero contributions from terms of the form (henceforth
1 � i, j, k, l � 4 and 5 � m, n, p, q � 10)

1

2(4!)2
ε0 2a+1 2a+2 ijmnklpqHijmnHklpq . (35)

However the way H and F are constructed also implies that (35) is equal to

1

2(4!)2

(
4!

2!2!

)2

8

(
2k√

3

)2

εijklfij fkl

which now must equal to − k√
3
f 2 from the left-hand side of (34). Remember that in D = 5,

we chose fij to be (anti) self-dual in Euclidean R
4, which implies that

− k√
3

= ±2k2

3

or k = ∓√
3/2 for a solution. This is exactly the value of b found in D = 5.

Hence our Gödel-type metric (32) and choice of AA and F yield a class of exact solutions
to D = 11 supergravity theory. (In fact, it has also been shown that this class preserves 5/8
of the supersymmetry [18].)

4. Gödel-type metrics with (D − 1)-dimensional non-flat backgrounds

So far we have assumed that h0µ = 0 and hij = δ̄ij , the (D − 1)-dimensional Kronecker delta
symbol, in the metric (1). We have also taken u0 = 1 and ∂0uα = 0. These assumptions
simplified the calculation of the Ricci tensor (4) and we showed that for the metric (1) to be
an exact solution to the Einstein–Maxwell dust field equations in D dimensions, one had the
(D − 1)-dimensional Euclidean source-free Maxwell’s equations (7) to solve. Now let us take
hµν to be a general (D − 1)-dimensional non-flat spacetime and for simplicity take uk = 1.

One now finds that uµhµν = 0 and the inverse of the metric is given by (2) again.
However the determinant of gµν is now different, g = −h, where h is the determinant of the
(D − 1) × (D − 1) submatrix obtained by deleting the kth row and the kth column of hµν .
The new Christoffel symbols of gµν are given by

�̃µ
αβ = γ µ

αβ + uµuσγ σ
αβ + 1

2

(
uαf µ

β + uβf µ
α

) − 1
2uµ(uα,β + uβ,α), (36)

where γ µ
αβ are the Christoffel symbols of hµν and we assume that the indices of uµ and fαβ

are raised and lowered by the metric gµν . By using a vertical stroke to denote a covariant
derivative with respect to hµν so that uα|β = uα,β − γ ν

αβuν , (36) can simply be written as

�̃µ
αβ = γ µ

αβ + 1
2

(
uαf µ

β + uβf µ
α

) − 1
2uµ(uα|β + uβ|α). (37)

Thus the ordinary commas in (3) have been replaced with vertical strokes and the Christoffel
symbols of hµν have been added to obtain the Christoffel symbols (37) of gµν .

To further remove any ambiguity, let us also denote a covariant derivative with respect to
gµν by ∇̃µ, thus

∇̃βuα = uα,β − �̃ν
βαuν.

Using these preliminaries one can in fact show that uα∇̃αuβ = 0 and ∇̃αuβ = 1
2fαβ , hence uµ

is still tangent to a timelike geodesic curve and is still a timelike Killing vector.
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The Ricci tensor turns out to be

R̃µν = r̂µν + 1
2fµ

αfνα + 1
2 (uµj̃ ν + uνj̃µ) + 1

4f 2uµuν, (38)

where f 2 = f αβfαβ as before, j̃ µ ≡ f α
µ|α and r̂µν is the Ricci tensor of hµν . The Ricci scalar

is now readily obtained as

R̃ = r̂ + 1
4f 2 + uµj̃µ,

where r̂ denotes the Ricci scalar of hµν . (Note that r̂ = gαβ r̂αβ = h̄αβ r̂αβ by using uµ = −δ
µ

k ,
(2) and uµγ ν

µα = 0 in the explicit calculation of r̂ .) Setting j̃ µ = 0, the Einstein tensor is
found to be

G̃µν = r̂µν − 1
2hµνr̂ + 1

2T f
µν +

(
1
4f 2 + 1

2 r̂
)
uµuν, (39)

where T
f
µν denotes the Maxwell energy–momentum tensor for fµν as before.

Note that in fact

j̃ µ = (gαβfβµ)|α = (h̄αβfβµ)|α.

This follows by using (2), uαfµα = 0, uµ = −δ
µ

k and the initial assumptions on hµν . Hence
j̃ µ = 0 equivalently implies that h̄µν j̃ ν = 0 or

∂α(h̄αµh̄βν
√

|h|fµν) = 0. (40)

Hence we find that the Einstein tensor of the (D −1)-dimensional background hµν acts as
a source term for the Einstein equations obtained for the D-dimensional Gödel-type metric and
that the curvature scalar of the background contributes to the energy density of the dust fluid
provided that the (D − 1)-dimensional source-free Maxwell equation (40) in the background
holds. In the following subsection we give a class of such solutions in the background of some
spaces of constant curvature.

Note that all the theories we discussed in subsections 3.2 to 3.4 have Gödel-type metrics as
exact solutions with the Ricci flat background metric hµν where the 3-form field Hµνα and the
2-form field Fµν are given in exactly the same way as those defined in these subsections, the
dilaton field is taken to be zero and the vector field uα now satisfies the Maxwell equation (40)
in the background hµν . Hence the bosonic field equations of all of these supergravity
theories have effectively reduced to the Maxwell equation (40)! In subsection 4.3, we will
present solutions of this type by taking the (D − 1)-dimensional Tangherlini solution as the
background hµν .

4.1. Solutions with (D − 1)-dimensional conformally flat backgrounds

Let us now take the special fixed coordinate xk as x0 (i.e. k = 0) and let the background hij

be conformally flat so that hij = e2ψ δ̄ij . Here Latin indices run from 1 to D − 1. If we denote
the radial distance of R

D−1 by r =
√

xixi , take ψ = ψ(r) and use a prime to denote the
derivative with respect to r, then one finds that (see, e.g., [29])

r̂ij − 1

2



Gödel-type metrics in various dimensions 1539

If ψ ′′ + ψ ′
r

= 0, then one finds that ψ = a ln r + b for some constants a and b. Taking
b = 0, this gives

r̂ij − 1

2
hij r̂ = a(a + 2)

r4
xixj .

If one chooses a = −2, then hij = 1
r4 δ̄ij and now both r̂ij and r̂ vanish. One now has to solve

(40) in this background to find the Gödel-type metric gµν which solves (39) with r̂µν = r̂ = 0.
To construct such a solution, take ui = s(r)Qijx

j where Qij is fully antisymmetric with
constant components. Equation (40) implies that (r2s ′′ + 6rs ′ + 4s)Qj�x

� = 0, and in general
one obtains

ui =
(

A

r4
+

B

r

)
Qi�x

�

for some real constants A and B.
Thus the line element corresponding to the Gödel-type metric in D = 4 in this three-

dimensional conformally flat background

ds2 = 1

r4
(dx2 + dy2 + dz2) −

(
dt +

(
A

r4
+

B

r

)
Qi�x

� dxi

)2

solves the D = 4 Einstein charged dust field equations.
Let us further set Q13 = Q23 = 0 but Q12 �= 0 for simplicity and write the resultant line

element using cylindrical coordinates. One finds

ds2 = 1

r4
(dρ2 + ρ2 dφ2 + dz2) −

(
dt − Q12

ρ2

r4
(A + Br3) dφ

)2

.

Employing the curve C of subsection 2.3 and its tangent vector vµ, one finds that

v2 = gφφ = ρ2
0

r4
0

(
1 − (Q12)

2 ρ2
0

r4
0

(
A + Br3

0

)2
)

with r2
0 = ρ2

0 + z2
0. Since v2 is not positive definite in its full generality, we conclude that there

exist closed timelike and closed null curves in this spacetime.

4.2. Solutions with (D − 1)-dimensional Einstein spaces as backgrounds
(which are themselves conformally flat)

Let us again take the special fixed coordinate xk as x0 and the background hij to be conformally
flat so that hij = e2ψ δ̄ij . However let us now assume that r̂ij = �hij , where � denotes the
cosmological constant; i.e. the background is a (D − 1)-dimensional Einstein space as well.
This yields

r̂ = (D − 1)� and r̂ij − 1

2
hij r̂ =

(
3 − D

2

)
� e2ψ δ̄ij .

Substituting these into (39), one finds that when the background hµν is a (D − 1)-dimensional
Einstein space, the Gödel-type metric gµν provides a solution to

G̃µν =
(

3 − D

2

)
�gµν +

1

2
T f

µν +

(
1

4
f 2 + �

)
uµuν,

which describes a charged perfect fluid source with

p = 1
2 (3 − D)� and ρ = 1

4f 2 + 1
2 (D − 1)�.

(For D � 4,� must be negative in order to have a positive pressure density p.)
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We now further assume that ψ = ψ(z) and take D = 4 for simplicity. (One can again
generalize the arguments we present here to D > 4.) Such a choice of ψ yields

r̂ij − 1
2hij r̂ = −∂i∂jψ + (∂iψ)(∂jψ) + δ̄ij∇2ψ = (−ψ ′′ + (ψ ′)2)δ̄3

i δ̄
3
j + ψ ′′δ̄ij ,

where a prime denotes the derivative with respect to z. One then has to solve −ψ ′′ + (ψ ′)2 = 0
which yields ψ = b − ln|z + a| for some real constants a and b. Further demanding r̂ = 3�

fixes the constant b so that

hij = −2

�(z + a)2
δ̄ij .

Thus for a physically acceptable background, it must be that � < 0.
Hence one now has to solve (40) in this background so that the Gödel-type metric gµν

solves (39) in the form

G̃µν = − 1
2�gµν + 1

2T f
µν +

(
1
4f 2 + �

)
uµuν,

i.e. the charged perfect fluid source has pressure density p = − 1
2�, (and p > 0 when � < 0)

and energy density ρ = 1
4f 2 + 3

2�, and � < 0 must be chosen properly so that ρ > 0.
To find a solution to (40), which simply takes the form ∂i((z + a)fij ) = 0 in this

background, let us use the ansatz ui = δ̄3
i s(x, y, z). Then fij = δ̄3

j ∂is − δ̄3
i ∂j s and when the

free index j is equal to 3, one finds ∂�((z + a)∂�s) = 0, where the index � runs over 1 and 2.
When j = � �= 3, one similarly obtains ∂3((z + a)∂�s) = 0, which is easily integrated to give

∂�s = c�(x, y)

z + a

for some ‘integration constants’ c�(x, y). Consistency with the j = 3 equation above further
constrains c� to satisfy ∂�c� = 0. Hence letting c� = ∂�c for a potential c(x, y), one finds that

s(x, y, z) = c(x, y)

z + a

for a function c(x, y) which is harmonic in the (x, y) variables.
Substituting these into the metric gµν , one finds that the line element corresponding to

this D = 4 example is given in cylindrical coordinates as

ds2 = −2

�(z + a)2
(dρ2 + ρ2 dφ2 + dz2) −

(
dt +

c(x, y)

z + a
dz

)2

.

One then finds that the norm of the tangent vector vµ to the curve C of subsection 2.3 is

v2 = gφφ = −2ρ2
0

�(z0 + a)2
.

One again sees that for v2 to be positive definite � must be � < 0. (In that case the pressure
density of the perfect fluid is also positive, p > 0.) So we see that the closed curve of
subsection 2.3 may be timelike and also the discussion we give at the end of subsection 2.4
regarding the universal covering can similarly be repeated here.

4.3. Spacetimes with (D − 1)-dimensional Riemannian Tangherlini
solutions as backgrounds

Let the (D − 1)-dimensional background metric hµν be the metric of an Einstein space,

r̂µν = 2�

3 − D
hµν (D �= 3).
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Then the full D-dimensional Einstein tensor becomes

G̃µν = 1

2
T f

µν + �gµν +

(
1

4
f 2 +

2�

3 − D

)
uµuν (D �= 3).

Hence our metric (1) solves the Einstein’s field equations with a charged dust source and a
cosmological constant provided the source-free Maxwell equation (40) holds. The energy
density of the dust is

ρ = 1

4
f 2 +

D − 1

3 − D
�,

where � must be chosen so that ρ > 0.
Consider the line element corresponding to the (D − 1)-dimensional Riemannian

Tangherlini solution with a cosmological constant �

ds2
D−1 = ζ dt2 +

dr2

ζ
+ r2 d�2

D−3,

where ζ = 1 − 2V with

V =
{

mr4−D + �
(D−3)(D−2)

r2 (D � 5),

m + �
2 r2 (D = 4),

where m is the constant mass parameter, d�2
D−3 is the metric on the (D − 3)-dimensional unit

sphere and we take the static limit so that all acceleration parameters vanish [12].
Let the special fixed coordinate xk be xD−1 this time. Let us also assume that

uµ = u(r)δ0
µ + δD−1

µ . Then fµν = (
δr
µδ0

ν − δ0
µδr

ν

)
u′, where a prime denotes the derivative with

respect to r. The only nontrivial component of (40) is obtained when β = 0 and in that case
(rD−3u′)′ = 0, which yields

u(r) =
{
ar4−D + b (D � 5),

a ln r + b (D = 4),

for some real constants a and b. Here b is irrelevant since it can be gauged away and taken as
zero.

Substituting these into metric (1), the D-dimensional line element becomes

ds2 = ζ dt2 +
dr2

ζ
+ r2 d�2

D−3 − (u(r) dt + dxD−1)2.

For this solution one has

f 2 =
{

2a2(D − 4)2r6−2D (D � 5),

2a2/r2 (D = 4),

and one finds that the energy density of the dust diverges at r = 0. In the simple case a = 0,
the Maxwell part of the full energy momentum tensor vanishes and one just has a dust source
with

ρ = D − 1

3 − D
�,

and for ρ > 0,� must be negative. For D = 4, ζ = 0 when r2 = (1 − 2m)/�.
Note that the Tangherlini solutions we start with are locally Riemannian metrics and

the parameter m is no longer the ‘mass constant’ in the D-dimensional spacetime M. The
local coordinates chosen here are (t, r, θ1, θ2, . . . , θD−3, x

D−1). Here xD−1 plays the role of
the ‘time’ coordinate and the rest of the coordinates (t, r, θ1, θ2, . . . , θD−3) are the (D − 1)-
dimensional cylindrical coordinates. Here the t = constant surfaces are planes perpendicular
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to the t-axis and the r = constant surfaces are the cylinders containing the set of points r = 0,
i.e. the t-axis. Hence in our solution the set of points ζ = 0 defines a (D − 1)-dimensional
cylinder. As an illustration, when D = 5 and � = 0, we have ζ = 1 − 2m

r
and

ds2 =
(

1 − 2m

r

)
dt2 +

dr2

1 − 2m
r

+ r2(dθ2 + sin2 θ dφ2) −
(a

r
dt + dx4

)2
,

with f 2 = 2a2

r4 . Hence at r = 2m (a cylinder in five-dimensions), ζ = 0. This is not
a spacetime singularity and does not describe an event horizon either. Inside the cylinder
(r < 2m), the signature of the spacetime changes from (+, +, +, +,−) to (−,−, +, +,−). The
spacetime singularity is located at r = 0 (inside the cylinder) which is the t-axis. It is clear
that the interior region of this cylinder is not physical. The solutions we give by using the
Tangherlini metrics describe physical spacetimes only in those regions where ζ > 0. If the
t-coordinate is assumed to be closed (t ∈ [0, 2π ]), the cylinders mentioned above should be
replaced by tori.

As we pointed out earlier, the solutions presented here are also solutions of the supergravity
theories listed in section 3 with the 2- and 3-form fields defined in exactly the same way
as those given in subsections 3.2–3.4 and with a vanishing dilaton field. The only field
equation we had to solve was the Maxwell equation (40) in the Riemannian Tangherlini
background.

5. Conclusion

We have introduced and used Gödel-type metrics to find charged dust solutions to the Einstein’s
field equations in D dimensions. We started with a (D − 1)-dimensional Riemannian
background (which could be taken as either flat or non-flat) and showed that solutions to
D-dimensional Einstein–Maxwell theory with a dust source could be obtained provided the
source-free Maxwell’s equation is satisfied in the relevant background. The corresponding
geodesics were also found to be described by the Lorentz force equation for a charged particle in
the background geometry. We gave examples of spacetimes which contained closed timelike
and closed null curves and others that contained neither of these. We used the Gödel-
type metrics to find exact solutions to various kinds of supergravity theories. By constructing
the 2-form and 3-form fields out of the vector field uµ and by assuming a vanishing dilaton
field, we demonstrated that the bosonic field equations of these supergravity theories could
effectively be reduced to a simple source-free Maxwell’s equation (40) in the relevant
background hµν .

In the case of non-flat backgrounds, we constructed explicit solutions for D = 4 when the
background was taken to be conformally flat, an Einstein space and a Riemannian Tangherlini
solution. We showed that the Gödel-type metrics described a black-hole-like object depending
on the parameters in the latter case. We also discussed the existence of closed timelike or
closed null curves for conformally flat and Einstein space backgrounds.

It would be worth studying to see how much of the supersymmetry is preserved in the
solutions we have given to various supergravity theories here and to further seek whether
Gödel-type metrics can be employed in finding new (possibly supersymmetric) solutions to
others that we have not considered. Throughout this work, we assumed the component of uµ

along the fixed special coordinate xk to be constant. Another interesting point to investigate
would be to generalize this assumption to non-constant uk . One would then expect to construct
solutions to the Einstein–Maxwell dilaton 3-form field equations. Work along these lines is in
progress and we expect to report our results soon.
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[12] Gürses M and Sarıoğlu Ö 2004 Gen. Rel. Grav. 36 403–10 (Preprint gr-qc/0308020)
[13] Duff M J, Nilsson B E W and Pope C N 1986 Phys. Rep. 130 1
[14] Caldarelli M M and Klemm D 2004 Class. Quantum Grav. 21 L17–20 (Preprint hep-th/0310081)
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