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Abstract
It is shown explicitly that when the characteristic vector field that defines a
Gödel-type metric is also a Killing vector, there always exist closed timelike
or null curves in spacetimes described by such a metric. For these geometries,
the geodesic curves are also shown to be characterized by a lower-dimensional
Lorentz force equation for a charged point particle in the relevant Riemannian
background. Moreover, two explicit examples are given for which timelike and
null geodesics can never be closed.

PACS numbers: 04.20.Jb, 04.40.Nr, 04.50.+h, 04.65.+e

1. Introduction

The celebrated Gödel metric [1] solves the Einstein field equations with a homogeneous perfect
fluid source and has a G5 maximal symmetry [2]. The Gödel spacetime admits closed timelike
and closed null curves but contains no closed timelike or closed null geodesics [3]. Moreover,
the Gödel universe is geodesically complete and it has neither a singularity nor a horizon.

In its original form, the Gödel metric reads

ds2 = −(dx0)2 + (dx1)2 − 1
2e2x1

(dx2)2 + (dx3)2 − 2ex1
dx0 dx2. (1)

(In fact Gödel’s original metric has an overall constant factor a2 multiplying the line element.
We have taken a = 1 here.) A simple rearrangement of the terms yields that (1) can also be
written as

ds2 = (dx1)2 + 1
2e2x1

(dx2)2 + (dx3)2 − (
dx0 + ex1

dx2
)2

. (2)
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This form (2) suggests that the Gödel metric can be thought of as cast in the form

gµν = hµν − uµuν, (3)

where the ‘background’ hµν is a non-flat 3-metric and uµ = δ0
µ + ex1

δ2
µ is a timelike unit

vector: gµνuµuν = −1. Note, however, that (2) is not the only way of rearranging the terms
in (1). One could as well rewrite it as

ds2 = (dx0)2 + (dx1)2 + (dx3)2 − (√
2 dx0 + 1√

2
ex1

dx2)2
, (4)

which again can be viewed in the form of (3); however, this time the ‘background’
hµν = diag(1, 1, 0, 1) describes an obviously flat three-dimensional spacetime and the new
uµ = √

2δ0
µ + (1/

√
2)ex1

δ2
µ is again a timelike unit vector in this new form.

Inspired by these observations, a class of D-dimensional metrics were introduced,
which were christened Gödel-type metrics, and used for producing new solutions to various
gravitational theories in diverse dimensions [4, 5]. Stated briefly, these metrics are of the form
(3), where the background hµν is the metric of an Einstein space of a (D − 1)-dimensional
Riemannian geometry in the most general case and uµ is a timelike unit vector. A further
assumption is that both hµν and uµ are independent of the fixed special coordinate xk with
0 � k � D − 1 and, moreover, that hkµ = 0. A detailed analysis was given corresponding
to the two distinct cases uk = constant and uk �= constant, where uµ = −δ

µ

k

/
uk , in [4] and

[5], respectively. It was shown that Gödel-type metrics with uk = constant can be used in
constructing solutions to the Einstein–Maxwell field equations with a dust distribution in D
dimensions and in that case the only essential field equation turns out to be the source-free
‘Maxwell’s equation’ in the relevant background [4]. One also finds that uµ is tangent to a
timelike geodesic curve that is also a timelike Killing vector [4]. Moreover, it was established
in [5] that when uk �= constant, the conformally transformed Gödel-type metrics can be used
in solving a rather general class of Einstein–Maxwell-dilaton-3-form field theories in D � 6
dimensions and that, in this case, all field equations can be reduced to a simple ‘Maxwell
equation’ in the corresponding (D − 1)-dimensional Riemannian background. However, with
uk �= constant, uµ is no longer a Killing vector field unlike the constant case [5]. In these
works, it was also shown that Gödel-type metrics can be used in obtaining exact solutions to
various supergravity theories, in which case uk may be considered as related to a dilaton field
φ via the relationship φ = ln |uk|. (See [4, 5] for the details.)

The existence of the closed timelike and closed null curves in the Gödel spacetime can be
best inferred by transforming (1) to the cylindrical coordinates in which case it reads

ds2 = −dt2 + dr2 + dz2 − sinh2 r(sinh2 r − 1) dϕ2 + 2
√

2 sinh2 r dϕ dt. (5)

It readily follows that the curve C = {(t, r, ϕ, z)|t = t0, r = r0, z = z0, ϕ ∈ [0, 2π ]}, where
t0, r0 and z0 are constants, is a closed timelike curve for r0 > ln (1 +

√
2) and a closed null

curve for r0 = ln(1 +
√

2).
There have been attempts to remove such closed timelike curves from spacetimes

described by Gödel-type metrics by introducing observer-dependent holographic screens [6, 7]
in the context of supergravity theories. Other ‘remedies’ that have been put forward to remove
such curves involve the addition of scalar fields [8], more specifically dilaton and axion fields
[9], to change the matter content, and to consider theories that involve higher order curvature
terms in their local gravity action [10, 11]. The discussion of the closed timelike curves in
these works, e.g. [8, 9], seems to be restricted to an investigation of the curves parametrized
as the curve C above, and thus solely on the general behaviour of the metric component gϕϕ
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since they use a general metric ansatz

ds2 = −[dt + C(r) dϕ]2 + D2(r) dϕ2 + dr2 + dz2

that respects the cylindrical symmetry and generalizes the Gödel metric (5).
The discussion regarding the existence of closed timelike or null curves and the behaviour

of geodesics in Gödel-type metrics with uk = constant had to be kept concise in [4]; thus only
curves parametrized as the curve C above were considered. However, it is obvious that there
can be other classes of curves that can be both closed and timelike (or null). The aim of the
present work is to provide a much more detailed analysis of these special curves in geometries
described by such metrics. Specifically, it is going to be proved explicitly that the non-flat
spacetimes described by Gödel-type metrics with both flat and non-flat backgrounds always
have closed timelike or null curves. As a separate discussion, it will also be shown that the
geodesics of Gödel-type metrics with constant uk are characterized by the (D−1)-dimensional
Lorentz force equation for a charged point particle formulated in the corresponding Riemannian
background.

2. Closed timelike curves in Gödel-type metrics with flat backgrounds and constant uk

In this section, we will assume without loss of generality that the fixed special coordinate
xk equals x0 ≡ t , the background hµν describes a flat Riemannian geometry, h0µ = 0 and
u0 = 1. We will also take D = 4 for simplicity but what follows can easily be generalized to
higher dimensions.

In subsection 2.4 of [4], spacetimes with the line element

ds2 = dρ2 + ρ2 dφ2 + dz2 − (dt + s(ρ, φ) dz)2 (6)

were considered. It was found that this metric (6) is a solution of the charged dust field
equations in four dimensions provided s(ρ, φ) is a harmonic function in two dimensions.
Then the simplest possible choice, namely s = constant and a rather plain and specific curve
of the form C̄ = {(t, ρ, φ, z)|t = t0, ρ = ρ0, φ = φ0, z ∈ [0, 2π)}, where t0, ρ0 and φ0

are constants, was considered. Then it was shown that the tangent vector v̄µ = (∂/∂z)µ is
timelike if (s(ρ0, φ0))

2 > 1. However, it was argued that one could exclude these closed
timelike curves by considering the z coordinate to be in the universal covering of this patch,
namely by taking z to be on the real line R. Finally, this subsection was closed with the
statement: we thus conclude that the solutions we present correspond to spacetimes that
contain both closed timelike and null curves and that contain neither of these depending
on how one solves (7). (Here (7) refers to the flat three-dimensional Euclidean source-free
‘Maxwell’s equation’ ∂ifij = 0, where i, j indices range from 1 to 3 and fij ≡ ∂iuj − ∂jui .)

It readily follows that the ‘Maxwell equation’ ∂ifij = 0 is equivalent to the Laplace
equation for the (nontrivial) function s(ρ, φ) in two dimensions. In [4], it was implicitly
assumed that there were nontrivial harmonic functions suitable for the discussion carried on
and the conclusion reached in subsection 2.4. However, we want to show in what follows that
the previous discussion does not necessarily exclude the possibility of other closed timelike
curves.

Let us, first of all, consider any smooth timelike curve � in the spacetime described by (6)
with constant ρ and φ, so that (t (η), ρ0, φ0, z(η)) is a parametrization of � with a normalized
tangent vector(

dz

dη

)2

−
(

dt

dη
+ s0

dz

dη

)2

= −1, where s0 ≡ s(ρ0, φ0) = constant. (7)
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This may be solved for dt/dη and formally integrated on η to get

t (η) = t (0) − s0[z(η) − z(0)] + ε

∫ η

0

[
1 +

(
dz

dη′

)2
]1/2

dη′, where ε = ±1. (8)

Since the integral in (8) is an increasing function of η, this shows that there are no smooth
timelike curves along which both t and z simultaneously recover their initial values and,
therefore, there are no closed timelike curves of this type for the metric (6). However, for
η � 1, one may have timelike curves where both t and z perform rather large excursions, but
then come back to values that are close to their initial values.

This brings to mind the question whether it could be possible to obtain closed timelike
curves if one allows also a variation in ρ and/or φ. As an example, consistent with the
assumption of being harmonic, consider a neighbourhood of a point (ρ0, φ0), and assume that,
for fixed φ, the function s(ρ, φ) takes the form

s(ρ, φ) = s0 + s1(ρ − ρ0), (9)

where s0 and s1 are constants. Then, one can check that the curve

ρ(η) = ρ0 + a cos η, φ = φ0, z(η) = a sin η,

t (η) = −a
[
s0 +

as1

2
cos η

]
sin η

(10)

is a smooth timelike curve with a normalized tangent vector, provided that a is a solution of

s2
1a

4 − 4a2 − 4 = 0. (11)

A suitable solution of (11) is

a =

√
2 + 2

√
1 + s2

1

s1
, s1 �= 0, (12)

which is well defined for all values of s1. Since the coordinates (t, ρ, z) are all periodic in η,
one concludes that (10) plus (12) represents a smooth closed timelike curve for the metric (6).

This was only a counter example for the assertion that (6) is an example of a spacetime
without closed timelike curves. It follows from this analysis that in order to determine the
absence (or the presence) of closed timelike curves, one would need to consider in each case
the explicit form of the function s(ρ, φ). As for another, more general, example, consider

sn(ρ, φ) = γ + ρn(α cos nφ + β sin nφ), n ∈ Z
+, (13)

where α, β and γ are real constants. (Obviously this function is related to the real and
imaginary parts of the complex analytic function g(ζ ) = ζ n, n ∈ Z

+.) It readily follows that
the nontrivial components of the Maxwell (matter) field

fρz = nρn−1(α cos nφ + β sin nφ), fφz = nρn(−α sin nφ + β cos nφ)

now depend on the constants α and β, and do not vanish for all (ρ, φ) unless α, β → 0.

Let us now take the curve �̃ (similar to the curve � above) defined by (t (η), ρ(η), φ0, z(η)),
where one can assume that the parameter η takes values in [0, 2π ] without any loss of generality,

ρ(η) = ρ0 + a cos η, z(η) = a sin η, (14)

and φ0, ρ0 and a are real constants as before. Using the line element (6) with sn(ρ, φ) given
in (13) and solving the constraint equation that normalizes the tangent vector of this curve �̃

to unity, one finds that

dt

dη
= ε

√
1 + a2 − asn(ρ, φ0) cos η, where, again, ε = ±1, (15)
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and

sn(ρ, φ0) = γ + σn(ρ0 + a cos η)n with σn ≡ α cos nφ0 + β sin nφ0. (16)

When (15) is integrated for t, the outcome can be put in a form

t (η) = fn(η) + (Anσn + ε
√

1 + a2)η + t0, t0 = integration constant, (17)

where fn(η) is a periodic function of η that consists of a linear sum of sin mη terms (with
m = 0, 1, . . . , n + 1) and An is another constant term, both of which depend naturally on the
choice of the constant n ∈ Z

+. (Using the notation introduced thus far, one gets

An =
{−a2/2, n = 1
−a2ρ0, n = 2,

fn(η) =
{−a(γ + σ1ρ0) sin η − (a2σ1/4) sin 2η, n= 1
−(

a
(
γ + σ2ρ

2
0

)
+ 3a3σ2/4

)
sin η − (a2ρ0σ2/2) sin 2η − (a3σ2/12) sin 3η, n= 2,

for the simplest cases n = 1 and n = 2.) Similar to how the t (η) part of the curve � was made
a periodic function of η above, one can set the coefficient of the η term on the right-hand side
of (17) to zero by suitably choosing the constant An, provided the constant σn does not tend
to zero or that sn(ρ, φ) does not go to a constant. One again concludes that �̃, as described
above, represents a smooth closed timelike curve for the metric (6).

A natural question to address then is whether closed timelike or null curves exist for all
harmonic functions. The answer one finds is as follows.

Consider the most general curve C defined by (t (η), ρ(η), φ(η), z(η)), where the arc-
length parameter η takes values in the simple (generic) interval [0, 2π ]. Normalizing the
tangent vector of this curve C to unity in the geometry described by (6), one finds

dt

dη
= −s(ρ, φ)

dz

dη
+ ε

√
λ +

(
dρ

dη

)2

+

(
dz

dη

)2

+ ρ2

(
dφ

dη

)2

, (18)

where λ = 0 for null and λ = 1 for timelike curves. Now let the parametrizations of ρ, φ and
z be all periodic functions in η. Then the terms in the square root in (18) can be expanded in
a Fourier series in the interval [0, 2π ] and it is clear that this Fourier series expansion has a
non-negative constant term in it which looks like4

B = 1

2π

∫ 2π

0

√
λ +

(
dρ

dη

)2

+

(
dz

dη

)2

+ ρ2

(
dφ

dη

)2

dη > 0.

As it stands, since B �= 0, t (η) naturally picks up a non-periodic piece Bη from the second
term on the right-hand side of (18) and in order to have no closed timelike (or null) curves, it
must be that ∫ 2π

0
s(ρ(η), φ(η))

dz

dη
dη = 0 (19)

for all arbitrary periodic functions z(η). However, since ρ(η) and φ(η) are periodic functions
of η, it readily follows that s(ρ(η), φ(η)) is also periodic in η. (In fact, it is enough to demand
that s(ρ, φ) is a continuous function, rather than a harmonic function, of its arguments for
the discussion that follows. We would like to stress that the condition for being harmonic

4 Strictly speaking, B is positive definite for λ = 1 and non-negative for λ = 0. When λ = 0, B = 0 iff ρ, φ and z

are all constants, i.e. s(ρ, φ) = constant which we have already discussed. Hence, for the discussion that follows we
assume that B > 0.
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followed from the Maxwell equation (7) of [4].) In this case, one can expand s(ρ(η), φ(η))

in a Fourier series in η as

s(ρ(η), φ(η)) = a0 + g(η) = a0 +
∞∑

p=1

(ap cos pη + bp sin pη),

where a0, ak and bk are the Fourier coefficients in the usual manner. Now (19) implies that∫ 2π

0
g(η)

dz

dη
dη = 0.

If one chooses the periodic function z(η) so that dz/dη = g(η), then∫ 2π

0
(g(η))2 dη = 0,

which is possible only if g(η) = 0, and hence s(ρ, φ) = constant. Therefore, unless s(ρ, φ) =
constant, one can always cancel out the contribution of the B term above and find a closed
timelike or null curve in the spacetime described by (3).

We thus see that the conclusion reached at the end of subsection 2.4 of [4] needs to be
corrected as follows: there exists no nontrivial (non-constant) harmonic function s(ρ, φ) such
that the spacetime described by (6) has no closed timelike or null curves; i.e. one can always
find a closed timelike or null curve in the geometry of (6) given an arbitrary harmonic function
s(ρ, φ).

3. Closed timelike curves in Gödel-type metrics with non-flat backgrounds and
constant uk

Let us now see how the results of section 2 can also be applied to Gödel-type metrics with
non-flat backgrounds but with constant uk . Let us once again assume without loss of generality
that the fixed special coordinate xk equals x0 ≡ t , the background hµν is the metric of an
Einstein space of a (D−1)-dimensional (non-flat) Riemannian geometry, h0µ = 0 and u0 = 1.
To keep the discussion simple, let us take D = 4 as before; however, the following can be
generalized to higher dimensions without any difficulty.

In [4], it was found that the Gödel-type metric

ds2 = hij (x
�) dxi dxj − (dt + ui(x

�) dxi)2, (20)

where indices i, j, � range from 1 to 3, is a solution to the Einstein–Maxwell field equations
with a dust distribution provided that the three-dimensional source-free ‘Maxwell equation’

∂α(h̄αµh̄βν
√

|h|fµν) = 0, (21)

where fµν ≡ ∂µuν − ∂νuµ as before and h̄µν is the three-dimensional inverse of hµν , is
satisfied. Starting with a specific background hµν , one should be able, in principle, to solve
(21) and use the solution vector ui to write down (20) explicitly. It should be kept in mind that
hij = hij (x

�) by assumption and, solving (21), ui = ui(x
�) in the most general case.

Now let us consider a general curve C defined by (t (η), xi(η)) parametrized with the
arc-length parameter η ∈ [0, 2π ] as in section 2. Normalizing the tangent vector of C to unity
by using (20), one obtains

dt

dη
= −ui(x

�)
dxi

dη
+ ε

√
λ + hij (x�)

dxi

dη

dxj

dη
, (22)

where ε = ±1, λ = 0 for null and λ = 1 for timelike curves. Now let the parametrization of
each xi be a periodic function in η. One can then follow similar steps to those described in



Closed timelike curves and geodesics of Gödel-type metrics 2659

section 2 and use Fourier series expansion of the terms on the right-hand side of (22). One
finds that the Fourier series expansion has a non-vanishing constant term of the form5

β = 1

2π

∫ 2π

0

√
λ + hij (x�)

dxi

dη

dxj

dη
dη > 0,

which contributes a term βη to the integration of (22) for t (η).
In order to have no closed timelike (or null) curves, one must have

3∑
i=1

∫ 2π

0
ui(x

�)
dxi

dη
dη = 0 (23)

for all arbitrary periodic functions xi(η). However, each ui(x
�) is also periodic in η since

each x�(η) is. Moreover, even though their explicit form may not be available, the functions
ui(x

�) are also continuous functions of η since they satisfy a second order (nonlinear) partial
differential equation (21). Thus these functions may also be expanded in a Fourier series as

ui(x
�) = ai0 + gi(η) = ai0 +

∞∑
p=1

(aip cos pη + bip sin pη)

with ai0, aip and bip denoting the Fourier coefficients in the usual sense. Now (23) implies
that

3∑
i=1

∫ 2π

0
gi(η)

dxi

dη
dη = 0.

If one chooses the periodic functions xi(η) such that dxi/dη = gi(η) for each i, then
3∑

i=1

∫ 2π

0
(gi(η))2 dη = 0,

which is possible only if gi(η) = 0 and hence ui(x
�) = constant for each i. However, one can

then define a new coordinate dτ = dt + ui dxi and can immediately see that (20) has no closed
timelike or null curves. Hence, unless each one of ui(x

�) is a constant, one can always find a
closed timelike or null curve in the spacetime (20) by smartly choosing a parametrization that
cancels out the contribution of the β term in the t (η) equation.

We thus see that the conclusion reached at the end of section 2 can be extended to include
all Gödel-type metrics of the form (20). When each ui(x

�) = constant, the spacetime is
obviously flat and there exist no closed timelike or null curves. In retrospect, we have proved
that the spacetimes described by Gödel-type metrics with both flat and non-flat backgrounds
always have closed timelike or null curves, provided that at least one of the ui(x

�) �= constant.

4. Geodesics of Gödel-type metrics with constant uk

Let us now examine the geodesics of Gödel-type metrics. In [4], it was shown that Gödel-type
metrics with flat backgrounds and constant uk have their geodesics described by the Lorentz
force equation for a charged particle in the corresponding (D − 1)-dimensional Riemannian
background. Let us now look into how the geodesics of a Gödel-type metric with a general
non-flat background (but still with constant uk) behave. To simplify the discussion, let us

5 Once again, β is in fact positive definite for λ = 1 and non-negative for λ = 0. However, when λ = 0, β = 0 iff
each xi(η) is a constant, and in that case (20) obviously has no closed null curves since by assumption the background
hµν has positive definite signature. Hence, we assume that β > 0 for what follows.
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again keep the general assumptions listed at the beginning of section 3, but this time let us
keep D arbitrary.

The inverse of the Gödel-type metric (3) is (as already given in (2) of [4])

gµν = h̄µν + (−1 + h̄αβuαuβ)uµuν + uµ(h̄ναuα) + uν(h̄µαuα), (24)

with h̄µν denoting the (D −1)-dimensional inverse of hµν , as before. The Christoffel symbols
of (3) in this case were also given by (37) of [4] as

�µ
αβ = γ µ

αβ + 1
2

(
uαf µ

β + uβf µ
α

) − 1
2uµ(uα|β + uβ|α) (25)

in terms of the Christoffel symbols γ µ
αβ of hµν and the ‘Maxwell field’ fµν ≡ ∂µuν −∂νuµ, as

before. Here a vertical stroke denotes a covariant derivative with respect to hµν and it should
be kept in mind that the indices on f and u are raised and lowered by the metric gµν .

With all the ingredients already at hand, let us now consider a geodesic curve in the
spacetime described by (3) which is parametrized as xµ(τ). Using (25) and denoting derivative
with respect to the affine parameter τ by a dot, the geodesic equation yields

ẍµ + γ µ
αβẋαẋβ + (uαẋα)

(
f µ

βẋβ
) − uµ(uα|β ẋαẋβ) = 0.

Noting that uα,β ẋβ = u̇α , writing f µ
β explicitly via the inverse of the metric (24) and using

uαfµα = 0, this becomes

ẍµ + γ µ
αβẋαẋβ + uαẋα(h̄µσ + uµh̄σνuν)fσβ ẋβ − uµ

(
u̇αẋα − γ σ

αβuσ ẋαẋβ
) = 0. (26)

Now contracting this with uµ and using uµuµ = −1, one obtains a constant of motion for the
geodesic equation as

uµẋµ = −e = constant. (27)

Meanwhile setting the free index µ = i in (26) and using uµ = −δµ
0, one also finds

ẍi + γ i
αβ ẋαẋβ − e(h̄iσ fσβ ẋβ) = 0,

or equivalently

ẋµẋi |µ = eh̄iσ fσµẋµ, (i = 1, 2, . . . , D − 1), (28)

i.e. the analogous (D − 1)-dimensional Lorentz force equation for a charged point particle (of
charge/mass ratio equal to e) written in the corresponding Riemannian background. Moreover,
contracting (28) further by hij ẋ

j and using the antisymmetry of fµν , one obtains a second
constant of motion

hij ẋ
i ẋj = �2 > 0.

Since

gµνẋ
µẋν = hij ẋ

i ẋj − (uµẋµ)2 = �2 − e2, (29)

one concludes that the nature of the geodesics necessarily depends on the sign of �2 − e2.
Note in fact that the existence of these two constants of motion e and � follow naturally

from the very structure of the metric (3). Equation (27) is a simple consequence of the fact that
uµ is a Killing vector and tangent to a timelike geodesic curve when uk = constant, as already
pointed out in section 1. Furthermore, since gµνẋ

µẋν = −1, 0 along the geodesic curve, (29)
follows immediately. However one still needs (24) and (25) to obtain (28) explicitly.

Let us now take a specific example and examine the behaviour of the geodesics of
this metric in more detail. Consider the simple solution discussed in section 2.1 of [4].
These odd-dimensional Gödel-type metrics with flat backgrounds are simply characterized
by ui = bJij x

j /2, where b is a real constant and Jij is fully antisymmetric with constant
components that satisfy J k

jJ
i
k = −δi

j . These yield fij = bJij , f0µ = 0 and it is readily seen



Closed timelike curves and geodesics of Gödel-type metrics 2661

that the ‘Maxwell equation’ ∂ifij = 0 holds trivially. It was shown in [4] that this solution
can be thought of as describing a spacetime filled with dust or as a solution to the Einstein–
Maxwell theory when D = 5. However, for odd D > 5, it could as well be considered as a
solution of Einstein theory coupled with a perfect fluid source with negative pressure.

Employing these specifications, the (D − 1)-dimensional Lorentz force equation (28) can
be put in the form

ẍ = ωJẋ, (30)

where we have defined ω = eb and used a matrix notation so that x denotes the (D − 1) × 1
column vector with entries xi and J denotes the (D − 1) × (D − 1) matrix with components
Jij . Defining a second column vector y as y = ẋ, (30) can be integrated as

y = eωτJx0,

for some constant column vector x0. Since J2 = −ID−1 (the (D−1)× (D−1) identity matrix
and keep in mind that D is odd) by construction, this can also be written as

y = ẋ = (cos ωτ + J sin ωτ)x0,

or integrating once again

x(τ ) = 1

ω
(sin ωτ − J cos ωτ)x0 + x1 (31)

for a new constant column vector x1. Note that

(x − x1)
T (x − x1) = 1

ω2
x0

T x0.

Defining a scalar as R2 ≡ x0
T x0/ω

2, one finds that |x − x1|2 = R2, which in general is the
equation of a (D − 2)-dimensional sphere with radius R and centre at x1.

The equation describing x0 is given by (27), which reads

ẋ0 +
b

2
ẋT Jx + e = 0

in matrix form. Using (31), this can be written as

ẋ0 +

(
e +

1

2
bωR2

)
+

b

2
(b1 sin ωτ + b2 cos ωτ) = 0

for some constants b1 ≡ x0
T x1 and b2 ≡ x0

T Jx1. Integrating this equation, one finally finds

x0(τ ) = −e

(
1 +

1

2
b2R2

)
τ +

1

2e
(b1 cos ωτ − b2 sin ωτ) + b3 (32)

for a new integration constant b3. Note that the case for the null geodesics corresponds simply
to taking bR = 1. Since the coefficient of the term linear in τ is never zero, x0(τ ) cannot be
periodic. Hence we conclude that the geodesic curves move on R × SD−2 and are complete
for this special solution in odd dimensions.

Note, in fact, that this result can also be generalized to the case when the rank of J is 2k

where 2 � 2k � D − 1 and J2 = −I2k , the 2k × 2k identity matrix. Then 2k of the spatial
coordinates will obey the Lorentz force equation

ẍi = ωJij ẋ
j , (i = 1, 2, . . . , 2k),

whereas the remaining spatial ones will simply satisfy

ẍi = 0, (i = 2k + 1, . . . , D − 1).
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Therefore the 2k-dimensional part will be periodic in τ and will describe a (2k−1)-dimensional
sphere whereas the remaining parts will be linear in τ . Hence the geodesic curves will move
on R

D−2k × S2k−1 in this case.
As yet another example, one can also consider the geodesics of the spacetime described by

(6). If one uses Cartesian coordinates (x, y, z) instead of the circular cylindrical coordinates
used in (6), the geodesics can alternatively be found by extremizing the Lagrangian

L = ẋ2 + ẏ2 + ż2 − (ṫ + s(x(τ ), y(τ ))ż)2 = λ, (33)

where s(x, y) is a harmonic function of its arguments, a dot denotes differentiation with respect
to the affine parameter τ and λ = −1, 0 for timelike and null geodesics, respectively. One
easily obtains two constants of motion from the t and z variations as

ṫ + s(x(τ ), y(τ ))ż = −e = constant and ż + es(x(τ ), y(τ )) = � = constant,

(34)

whereas the x and y variations yield

ẍ − e(∂s/∂x)(� − es(x, y)) = 0 and ÿ − e(∂s/∂y)(� − es(x, y)) = 0, (35)

respectively. Note that using the constants of motion in the expression (33) for the Lagrangian,
one now also has the constraint

ẋ2 + ẏ2 = λ + e2 − (� − es(x(τ ), y(τ )))2. (36)

In general, this system of coupled ordinary differential equations can be solved given the
explicit form of the harmonic function s(x, y).

Let us now consider as a simple example, the harmonic function

s(x, y) = γ + αx + βy, (37)

corresponding to the n = 1 case in (13). Keeping in mind that we are after closed timelike or
null geodesics, one can now easily integrate (35), set the coefficient of the linear term in τ to
zero and obtain the periodic functions x(τ) and y(τ). Using these in (34), one then calculates
z(τ ) (which itself turns out to be a periodic function in τ ) and t (τ ) as

t (τ ) = − e

2

(
1 − λ

e2

)
τ + g(τ),

where the constraint (36) has been used and g(τ) contains all the parts periodic in τ . Hence
for closed geodesics, one needs that λ = e2! However, this is not possible6 and one concludes
that there are no closed timelike or null geodesics in the spacetime described by (6) when
s(x, y) is given by (37). We conjecture that this result can also be generalized to the case of
the more general harmonic function s(x, y) given by (13).

5. Conclusions

In this work, it has been verified explicitly that the spacetimes described by Gödel-type metrics
with both flat and non-flat backgrounds always have closed timelike or null curves, provided
that at least one of the ui(x

�) �= constant. It has also been shown that the geodesics of
Gödel-type metrics with constant uk are characterized by the (D − 1)-dimensional Lorentz
force equation for a charged point particle formulated in the corresponding Riemannian
background. A specific example in odd dimensions has been considered for which timelike
and null geodesics are complete and never closed. It has also been laid out in a separate

6 Note that when e = 0, (35) and (34) are easily solved yielding x(τ), y(τ ) and z(τ ) as linear functions in τ and t (τ )

as a quadratic function in τ , which obviously do not describe closed geodesics then.
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example that there are no closed timelike or null geodesics in the spacetime described by (6)
when s(x, y) is a linear function of its arguments.

One possible direction to look at would be to examine the existence of closed timelike
curves in spacetimes described by the most general Gödel-type metrics with non-flat
backgrounds and non-constant uk .
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the USA. MG, AK and ÖS are partially supported by the Scientific and Technological Research
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