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Abstract
Using the algebraic method of Gardner’s deformations for completely
integrable systems, we construct recurrence relations for densities of the
Hamiltonians for the Boussinesq and the Kaup–Boussinesq equations. By
extending the Magri schemes for these equations, we obtain new integrable
systems adjoint with respect to the initial ones and describe their Hamiltonian
structures and symmetry properties.

PACS number: 02.30.Ik
Mathematics Subject Classification: 35Q53, 37K05, 37K10, 37K35

1. Introduction

In this paper we consider the most efficient way to prove the complete integrability of
evolutionary PDE systems. Namely, we apply the method of Gardner’s deformations [1–6] to
the Boussinesq and Kaup–Boussinesq equations. By construction, the deformations consist
of the (multi-)Hamiltonian scaling non-invariant parametric extensions Eε of the original
systems E0 and the parameter-dependent Miura transformations mε: Eε → E0. Inverting the
Miura transformations from the new systems, one obtains the recurrence relations for infinite
sequences of densities of the Hamiltonian functionals.

The deformations determine the Hamiltonians in the hierarchies and thus they contribute
to our knowledge of the geometric integrability picture. Below we improve a result [3] by
Kupershmidt showing that the sequences of conserved densities for the Boussinesq equation
satisfy two different recurrence relations simultaneously. Second, we emphasize that the
method of Gardner’s deformations is the most powerful instrument for proving the locality
[9] of hierarchies. Indeed, the deformations yield local Hamiltonians and do not require
calculation of the Nijenhuis tensors for recursion operators or description of the Poisson
cohomology groups whose nontriviality precludes infinite motion along the Magri schemes.
Third, solutions of the deformation problem determine Gardner’s deformations for the (nth)
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modified Boussinesq [10] and Kaup–Boussinesq [11] systems. Next, the deformations
constructed in this paper show that the extensions Eε must not necessarily interpolate (as it is
assumed in [7]) between the equations E0 and the modified systems that provide the canonical
factorizations for the higher Poisson structures [8]. These counter-examples contribute to the
classification of nonlocalities over the Boussinesq systems.

Finally, the search for Gardner’s deformations is motivated by the fact that they result in
the new adjoint hierarchies obtained by isolating the flows at higher powers of the deformation
parameters. We show that the adjoint Boussinesq equation (5) is C-integrable by solving
the related Cauchy problem and we prove that the adjoint Kaup–Boussinesq system (10) is
completely integrable by describing the Poisson pencil for it.

The paper is organized as follows. In section 2 we obtain two Gardner’s deformations
for the Boussinesq equation using the dispersionless case [17] as a starting point; also, we
integrate the adjoint Boussinesq system. In section 3 we construct the deformation of the
Kaup–Boussinesq equation and describe the bi-Hamiltonian structure of the adjoint system.

2. The Boussinesq equation

First we consider the Boussinesq equation with dispersion and dissipation, see [3],

Ut = Vx + αUxx, Vt = Uxxx + UUx − αVxx, α ∈ R. (1)

We note that for any α system (1) is transformed to the equation Ut t = (Uxxx · (1 +α) + UUx)x ,
which is scaling equivalent to the Boussinesq equation utt = (uxxx +uux)x whenever α �= −1.
Therefore, for α �= −1 we reduce (1) to the Boussinesq equation

ut = vx, vt = uxxx + uux. (2)

In the following, we consider the problem of Gardner’s deformation for system (2).
Next, we observe that a Gardner’s deformation for (2) (and for the Kaup–Boussinesq

equation (6) as well) is obtained from the deformation of the dispersionless reduction by
adding higher order terms to the equations Eε and to the Miura transformations mε: Eε → E0.
Indeed, the zero-order terms in the conserved densities, which are obtained recursively by
inverting the Miura substitutions, originate from the relations for the dispersionless systems.
The deformation for the dispersionless Boussinesq equation is described in [17]; it corresponds
to the case α = −1 in (1).

Theorem 1. There are two deformations
(
E±

ε ,m±
ε

)
for the Boussinesq equation (2). Both

extensions E±
ε are Hamiltonian with respect to the structure(

0 Dx

Dx 0

)
(3)

and the functionals with the densities

H±(ε) = 1
6 ũ3 − 1

2 ũ2
x + 1

2 ṽ2 + ε3
(

1
6 ṽ3 + 1

2 ũ2
x ṽ ± 1

2 ũx ṽ
2 ± 1

6 ũ3
x

)
,

respectively. The extended Boussinesq equations E±
ε are

ũt = ṽx + ε3(ũx ũxx ± ũxx ṽ ± ũx ṽx + ṽṽx),

ṽt = ũxxx + ũũx − ε3
(
ũxxx ṽ + 2ũxx ṽx + ũx ṽxx ± ũ2

xx ± ũx ũxxx ± ṽ2
x ± ṽṽxx

)
.

(4)

The respective Miura transformations m±
ε from E±

ε to (2) are given through

u = ũ ∓ 2εũx + 2ε2(ũxx ± ṽx) + ε3(ũṽ ± ũũx),

v = ṽ ∓ 2εṽx + 2ε2(ṽxx ± ũxxx ± ũũx) + ε3
(

1
3 ũ3 + ṽ2 + ũũxx ± ṽṽx ± ũx ṽ

)
∓ 2ε4(ũxũxx ± ũx ṽx ± ũxx ṽ + ṽṽx) + ε6

(
1
3 ṽ3 ± 1

3 ũ3
x + ũ2

x ṽ ± ũx ṽ
2
)
.
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The proposition of theorem 1 is obtained by a symbolic computation using the package
[18]. We solve the equation mε: Eε → E0 with respect to the extension Eε and the Miura
transformation mε, here E0 stands for (2). We suppose that Eε preserves the Poisson structure
(3) and the Hamiltonian H(ε) retracts to 1

6u3 − 1
2u2

x + 1
2v2 at ε = 0. Also, we assume that mε

and H(ε) are polynomial in ε. Further, note that the Boussinesq equation (2) is homogeneous
with respect to the weights |u| = 2, |v| = 3, |d/dx| = 1, |d/dt | = 2. We set |ε| = −1 and
generate the ansatz for mε and H(ε). Thus the equation mε: Eε → E0 leads to the algebraic
system for the undetermined coefficients. This overdetermined system is processed iteratively
by resolving linear relations and substituting them back into the equation for mε and Eε.
The fourth iteration gives the assertion. The same computational scheme is applied to the
Kaup–Boussinesq equation (6), see theorem 2.

The extended equations (4) consist of the original Boussinesq flows and the adjoint
flows at ε3, which will be further discussed in more detail. The Poisson structure (3) for
the extensions E±

ε together with the Miura transformations E±
ε → E0 induce [8] the Poisson

structures Â1 ∓ ε3Â2 for Boussinesq’s equation (2), here Â1 given through (3) and

Â2 =
(

8D3
x + uDx + Dx ◦ u 3vDx + vx

3vDx + 2vx D5
x + 5

(
uD3

x + D3
x ◦ u

) − 3(uxxDx + Dx ◦ uxx) + uDx ◦ u

)

are its first and second structures, respectively (see [10] and references therein). The
Hamiltonians for the extensions E±

ε are inherited from the original functionals, which are
described in proposition 1 below, by using the Miura substitutions m±

ε .

Proposition 1. Densities of the Hamiltonian functionals for the Boussinesq equation can be
obtained using two different recurrence relations, which are

ũ0 = u, ṽ0 = v, ũ1 = ±2ux,

ṽ1 = ±2vx, ũ2 = 2uxx ∓ 2vx, ṽ2 = 2vxx ∓ 2uxxx ∓ 2uux,

ũn = ±2Dx(ũn−1) − 2D2
x(ũn−2) ∓ 2Dx(ṽn−2) +

∑
k+�=n−3

[−ũkṽ� ∓ ũkDx(ũ�)], n � 3,

ṽ3 = ±2Dx(ṽ2) ∓ 2D3
x(ũ1) − 2D2

x(ṽ1) ∓ [uDx(ũ1) + ũ1ux]

− 1

3
u3 − v2 − uuxx ∓ uvx ∓ uxv,

ṽn = ±2Dx(ṽn−1) ∓ 2D3
x(ũn−2) − 2D2

x(ṽn−2)

∓
∑

k+�=n−2

2ũkDx(ũ�) −
∑

k+�+m=n−3

1

3
ũkũ�ũm

+
∑

k+�=n−3

[−ṽkṽ� − ũkD
2
x(ũ�) ∓ ũkDx(ṽ�) ∓ Dx(ũk)ṽ�

]
+

∑
k+�=n−4

2 · [±Dx(ũk)D
2
x(ũ�) + Dx(ũk)Dx(ṽ�) + D2

x(ũk)ṽ� ± ṽkDx(ṽ�)
]
,

n = 4, 5,

ṽn = ±2Dx(ṽn−1) ∓ 2D3
x(ũn−2) − 2D2

x(ṽn−2)

∓
∑

k+�=n−2

2ũkDx(ũ�) −
∑

k+�+m=n−3

1

3
ũkũ�ũm

+
∑

k+�=n−3

[−ṽkṽ� − ũkD
2
x(ũ�) ∓ ũkDx(ṽ�) ∓ Dx(ũk)ṽ�

]
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+
∑

k+�=n−4

2
[±Dx(ũk)D

2
x(ũ�) + Dx(ũk)Dx(ṽ�) + D2

x(ũk)ṽ� ± ṽkDx(ṽ�)
]

+
∑

k+�+m=n−6

[
−1

3
ṽkṽl ṽm ∓ 1

3
Dx(ũk)Dx(ũ�)Dx(ũm)

−Dx(ũk)Dx(ũ�)ṽm + Dx(ũk)ṽ�ṽm

]
, n � 6.

The ambiguity of signs of the differential terms does not affect the nontrivial conserved densities
ũ3k and ṽ3k . The densities with subscripts 3k + 1, 3k + 2 are trivial for all k � 0.

We have described two distinct recurrence relations for both sequences of the conserved
densities for (2). Thus we improve a result of [3], where one recurrence relation for only
one sequence was obtained. The relations listed in proposition 1 are also valid for those
Hamiltonians of the modified Boussinesq equation [10] which are obtained using the Miura
substitutions to (2). The modified fields themselves do not start these sequences of conserved
densities and thus cannot be regarded as their negative terms ũ−3, ṽ−3.

Further, consider the flow at ε3 in the rhs of equation (4) and fix the minus sign; the second
case in (4) is analogous. Thus we obtain the adjoint Boussinesq system

uτ = 1
2Dx((v − ux)

2), vτ = 1
2D2

x((v − ux)
2). (5)

It is Hamiltonian w.r.t. the structure (3) and the functional with density

H ′ = 1
6v3 + 1

2u2
xv − 1

2uxv
2 − 1

6u3
x.

The symbol of evolutionary system (5) is nonconstant contrarily to (2).
The adjoint Boussinesq system (5) is symmetry integrable (see [19] for methods, some

classifications, and references), admitting two infinite sequences of Hamiltonian symmetries
(us, vs) = ϕ[s] for all weights |s| = −(6k + 3 ± 2), k ∈ N�0 (we note that system (5)
is homogeneous w.r.t. the weights |u| = 2, |v| = 3, |d/dτ | = 5, |d/dx| = 1). These
flows reproduce (with proper modifications) the scheme for the symmetries of the original
Boussinesq hierarchy. Namely, they are arranged according to the diagram

ϕ[1] → ϕ[7] → ϕ[13] → · · · , ϕ[5] → ϕ[11] → · · · .
The flow ϕ[5] is the right-hand side of the adjoint Boussinesq equation (5) itself. The two
sequences of Hamiltonians for the higher symmetries of (5) are obtained from the functionals
for system (4) by isolating the coefficients of the highest powers of ε. For example, the
components ϕ

1,2
[7] of the Hamiltonian symmetry ϕ[7] are

ϕ1
[7] = Dx

(
(v − ux)(vxx − uxxx) + 1

2 (vx − uxx)
2
)
, ϕ2

[7] = Dx

(
ϕ1

[7]

)
.

The symmetry ϕ[11] that succeeds the equation in the hierarchy has the components

ϕ1
[11] = Dx

(
ww6x + 3wxw5x + 7wxxw4x + 9

2w2
xxx

)
, ϕ2

[11] = Dx

(
ϕ1

[11]

)
,

where we put w = v − ux . Moreover, the adjoint Boussinesq hierarchy is C-integrable. It is
not hard to prove that uτi

= ϕi[v − ux] and vτi
= Dx(ϕi) for all i. Therefore, uτi

= ϕi[w]
and wτi

= 0. Hence we have w(τi, x) = w(0, x), u(τi, x) = u(0, x) + τi · ϕi[w(0, x)] and
v(τi, x) = w(0, x) + ux(τi, x).

3. The Kaup–Boussinesq equation

Now we construct the Gardner deformation for the Kaup–Boussinesq equation

ut = uux + vx, vt = (uv)x + uxxx. (6)
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Theorem 2. The integrable extension Eε of the Kaup–Boussinesq equation (6) is the system

ũt = ũũx + ṽx + ε
(
ũũxx + ũ2

x + (ũṽ)x
)
,

ṽt = (ũṽ)x + ũxxx − ε(2ũx ũxx + ũũxxx + ũx ṽx + ũṽxx − ṽṽx).
(7)

System (7) is Hamiltonian with respect to the structure (3) and the functional

H(ε) =
∫ (

1

2
ũ2ṽ +

1

2
ṽ2 − 1

2
ũ2

x +
1

2
ε
[
ũũ2

x + 2ũũx ṽ + ũṽ2]) dx.

The Miura transformation mε: Eε → E0 is given through

u = ũ + ε(ũx + ṽ), v = ṽ + ε(ũũx + ũxx + ũṽ + ṽx). (8)

The recurrence relations upon densities of the Hamiltonian functionals for (6) are

ũ0 = u, ṽ0 = v, ũk = −Dx(ũk−1) − ṽk−1,

ṽk = −D2
x(ũk−1) − Dx(ṽk−1) −

∑
�+m=k−1

[ũ�Dx(ũm) + ũ�ṽm], k > 0. (9)

Relations (9) do not produce any auxiliary trivial conserved densities.

Relations (9) provide the formulae for the Hamiltonians of the (twice- and thrice-) modified
Kaup–Boussinesq equations [11]. The modified fields are conserved; nevertheless, they are
not obtained from the Hamiltonians for (6) by the Miura substitutions and the modified fields
cannot be used as the negative terms in the general scheme of (9).

Remark 1. The Gardner deformation for (6) generates a parametric family of the Bäcklund
autotransformations for the Burgers equation. First, recall that the Kaup–Boussinesq
equation (6) is related to the Kaup–Broer system ut = uxx + uux + wx,wt = (uw)x − wxx

by using the invertible substitution w = v − ux (the field u remains unchanged). The further
reduction w = 0 results in the Burgers equation ut = uxx + uux . Lifting the constraint w = 0
onto the extension (7), we get the equation ũt = ũxx + ũũx , which holds for all ε. Thus from
(8) we derive the one-parametric Bäcklund autotransformation

u = ũ + 2Dx ln(1 + εũ)

for the Burgers equation; this expression generalizes the Fokas’ formula [20, 21].
Substitution (8) provides the canonical factorization of the extended Poisson structure

Â1 + 2εÂ2 for the Kaup–Boussinesq equation, where Â1 is defined in (3) and

Â2 =
(

Dx
1
2Dx ◦ u

1
2uDx D3

x + 1
2Dx ◦ v + 1

2vDx

)
.

The two sequences of Hamiltonians, see (9), for the deformed Kaup–Boussinesq equation (7)
are inherited from the original functionals for the Kaup–Boussinesq equation (6) by using the
Miura substitution (8). The correlation between the higher flows for (7) and the symmetries
of (6) is standard, see [3] and references therein.

Taking the flow at ε in the extension (7), we obtain the adjoint Kaup–Boussinesq equation

uτ = uuxx + u2
x + uxv + uvx,

vτ = −(2uxuxx + uuxxx + uxvx + uvxx − vvx).
(10)

System (10) is bi-Hamiltonian with respect to two compatible local Poisson structures �1 and
�2, where �1 is (3) and

�2 =
(

0 Dx ◦ ux + Dx ◦ v

uxDx + vDx −uxxDx − Dx ◦ uxx − vxDx − Dx ◦ vx

)
. (11)

We conclude that the adjoint Kaup–Boussinesq equation (10) is completely integrable.
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Remark 2. Both Poisson structures (3) and (11) for (10) are of differential order 1. This
indicates that the system can be further extended with a higher order symbol such that its
complete integrability is preserved. The situation is analogous to the Gardner extension of
the Korteweg–de Vries equation [1]; we recall that the extension of KdV resulted in the
dispersionless modified KdV equation whose Poisson structures are of order 1.

Remark 3. The ‘minus’ Kaup–Boussinesq equation ut = uux + vx, vt = (uv)x −uxxx admits
a unique real quadratic extension

ũt = ũũx + ṽx + ε
(
ũũxx + ũ2

x

)
,

ṽt = (ũṽ)x − ũxxx − ε(ũx ṽx + ũṽxx) − ε2
(
ũ2ũxxx + ũũx ũxx + ũ3

x

)
.

(12)

System (12) is assigned by the Poisson structure (3) to the Hamiltonian

H′(ε) =
∫ (

1

2
ũ2ṽ +

1

2
ṽ2 +

1

2
ũ2

x + εũũx ṽ +
1

2
ε2ũ2ũ2

x

)
dx.

The invertible Miura transformation from the extension (12) to the ‘minus’ Kaup–Boussinesq
equation is

{u = ũ, v = ṽ + εũũx} ⇐⇒ {ũ = u, ṽ = v − εuux}. (13)

The recurrence relation obtained from (13) provides only the Casimirs
∫

u dx and
∫

v dx; all
the conserved densities ṽk are trivial if k > 0. Therefore, the deformation (12), (13) of the
‘minus’ Kaup–Boussinesq equation is trivial.

4. Conclusion

The Gardner deformations (Eε,mε) were constructed for the (Kaup–)Boussinesq equations E0

by using symbolic computations, and explicit recurrence relations for infinite sequences of
densities for the Hamiltonian functionals were obtained by expanding the Miura substitutions
m: Eε → E0 in the parameters ε. Integrability of the adjoint (Kaup–)Boussinesq systems
was established by revealing the bi-Hamiltonian structure for (10) and by solving the Cauchy
problem for (5). A one-parametric family of Bäcklund transformations for the Burgers
equation was obtained by a reduction of the Gardner deformation for the Kaup–Boussinesq
system.

In this paper, Gardner’s deformations were constructed for hierarchies of evolution
equations E0 (see [3] for a deformation of the hyperbolic sine-Gordon equation). Recall that
the ambient system EEL for the hierarchy of an evolution equation E0 is an Euler–Lagrange’s
hyperbolic system such that the flows within the hierarchy are Noether’s symmetries of EEL, see
[22, 23]. The ambient systems for KdV-type equations are Liouville-type: the 2D Toda lattice
associated with the root system A2 is [23] the ambient hyperbolic equation for the Boussinesq
equation (2) and the ambient system EEL for the modified Kaup–Boussinesq hierarchy is an
integrable extension [16] of the Liouville equation. It is straightforwardly proved that both 2D
Toda-type systems EEL are fragile with respect to the Gardner deformations of E0. Nevertheless,
suppose a 2D Liouville-type Euler–Lagrange system EEL is known for an evolution equation
E0. Then the ambient system specifies admissible Miura’s transformations for E0, which can
be obstructions to the presence of Gardner’s deformations if they are non-invertible. Hence the
search for the ambient Euler–Lagrange systems EEL helps to solve the problem of constructing
Gardner’s deformations.

We conclude that Gardner’s deformations result in two types of the adjoint systems
obtained by isolating the higher powers of the deformation parameters. In the first case, the
adjoint systems inherit the Poisson structure proportional to Dx , see (3), and the Hamiltonians
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from the original equations. Simultaneously, these adjoint systems may loose the higher
Poisson structures. Thus we obtain completely integrable systems which are not manifestly
bi-Hamiltonian. We conjecture that this is precisely the situation realized for the N = 2
SKdVa=1 equation [7, 24]. Hence a Gardner’s deformation and a bi-Hamiltonian formulation
for these systems are restored by constructing the ‘adjoint to adjoint,’ that is, the non-extended
system. Secondly, the adjoint systems acquire new Magri’s schemes similarly to the Poisson
pencil (3), (11) for (10). In this case the problem of constructing Gardner’s deformations
is closely related to the purely algebraic homotopy procedure for extending the Poisson
structures.

The results presented in this paper are essentially used for illustrating the general algebraic
approach to the problem of Gardner’s deformations and to the construction of two types of
integrable extensions for the Magri schemes. The approach is based on the notion of coverings
over PDE [12] and their parametric families constructed using the Frölicher–Nijenhuis bracket
[13–15]. We emphasize that the algebraic scheme is essentially the same for constructing
Gardner’s deformations and the Bäcklund transformations; moreover, the former is relatively
simpler than the latter. Hence the present paper provides new natural applications of the
framework developed in [13]. We discover that Gardner’s deformations, being dual to the
Bäcklund transformations, are inhomogeneous generalizations of the infinitesimal symmetries.
The algebraic formalism yields a cohomological description of Gardner’s deformations
and specifies the obstructions for existence of the deformations as non-invertible Miura’s
transformations. This will be the object of a subsequent publication, see [16].

We further intend to address the discretization problem for the spatial variables in
Gardner’s deformations. This amounts to the task of discretizing the extensions Eε and to
the question whether the deformation parameters ε always remain continuous and whether the
nature of the algebraic obstructions for the existence of deformations is preserved.
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