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Integrability of Kersten–Krasil’shchik coupled KdV–mKdV
equations: singularity analysis and Lax pair
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The integrability of a coupled KdV–mKdV system is tested by means of singular-
ity analysis. The true Lax pair associated with this system is obtained by the use of
prolongation technique. ©2003 American Institute of Physics.
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I. INTRODUCTION

Very recently, Kersten and Krasil’shchik1 constructed the recursion operator for symmetries
a coupled KdV–mKdV system

ut52uxxx16uux23wwxxx23wxwxx13uxw
216uwwx ,

~1!
wt52wxxx13w2wx13uwx13uxw,

which arises as the classical part of one of the superextensions of the KdV equation. In this
we study the integrability of this system using the Painleve´ test. Then, we use Dodd–Fordy2

algorithm of the Wahlquist–Estabrook3 prolongation technique in order to obtain the Lax pair. W
find a 333 matrix spectral problem for the Kersten–Krasil’shchik system.

II. SINGULARITY ANALYSIS

Let us study the integrability of~1! following the Weiss–Kruskal algorithm of singularit
analysis.4,5 The algorithm is well known and widely used, therefore we omit unessential com
tational details.

First, we find that a hypersurfacef(x,t)50 is noncharacteristic for the system~1! if fxÞ0
and setfx51 without loss of generality. Then we substitute the expansions

u5u0~ t !fa1¯1ur~ t !f r 1a1¯ ,
~2!

w5w0~ t !fb1¯1wr~ t !f r 1b1¯ ,

into ~1!, and find the following branches~i.e., admissible choices ofa, b, u0 , andw0), together
with the positionsr of resonances~where arbitrary functions can enter the expansions!:

a522, b521, u051, w056 i ,
~3!

r 521,1,2,3,4,6,

a!Electronic mail: akarasu@metu.edu.tr
b!Electronic mail: saks@pisem.net
c!Electronic mail: ismety@newton.physics.metu.edu.tr
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a522, b521, u052, w0562i ,
~4!

r 522,21,3,3,4,8,

a522, b52, u052, ;w0~ t !,
~5!

r 524,21,0,1,4,6,

a522, b53, u052, ;w0~ t !,

r 525,21,21,0,4,6, ~6!

besides those which correspond to the Taylor expansions governed by the Cauchy–Kovale
theorem.

The branch~3! is generic: the expansions~2! with ~3! describe the behavior of a gener
solution near its singularity. The nongeneric branches~4!, ~5!, and~6! correspond to singularities
of special solutions. The branches~4! and ~5! admit the following interpretation, in the spirit o
Ref. 6: ~4! describes the collision of two generic poles~3! with same sign ofw0 , whereas~5!
describes the collision of two generic poles~3! with opposite signs ofw0 . The branch~6! corre-
sponds to~5! with w0→0.

Next, we find from ~1! the recursion relations for the coefficientsun(t) and wn(t) (n
50,1,2,...) of theexpansions~2!, separately for each of the branches, and check the consist
of those recursion relations at the resonances. The recursion relations turn out to be con
therefore the expansions~2! of solutions of~1! are free from logarithmic terms. We conclude th
the system~1! passes the Painleve´ test for integrability successfully and must be expected
possess a Lax pair.

III. PROLONGATION STRUCTURE

By introducing the variablesp5ux , q5wx , r 5px , s5qx , we assume that there existN
3N matrix functionsF andG, depending uponu,w,p,q,r ,s, such that

yx52yF,
~7!

yt52yG,

wherey is a row matrix with elementsyA, A51,...,N. The system of equations in~1! can be
represented as the compatibility conditions of~7! if

Ft2Gx1@F,G#50, ~8!

where @F,G# is the matrix commutator. This requirement gives the set of partial differe
equations forF andG:

Fp5Fq5Fr5Fs50, Fu52Gr , 3wFu1Fw52Gs ,
~9!

pGu1qGw1rGp1sGq23~2up2qs1pw212uwq!Fu23~w2q1uq1pw!Fw2@F,G#50.

Next, we integrate equations~9! and find

F5S uw2
w3

2 DX11
w2

2
X21uX31wX41X5 , ~10!

whereX1 ,X2 ,X3 ,X4 ,X5 are constant matrices of integration. It is immediately seen thatX1 is in
the center of prolongation algebra.3 Hence, we can take it to be zero and findG as
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G5~2r 2ws2q212u22w42w2u!X32~s2w323uw!X42~p1wq!X62uwX72S w2

2
1uDX8

2qX92
w2

2
X102wX111X0 , ~11!

whereX0 is a constant matrix of integration. The remaining elements are

X65@X5 ,X3#, X75@X4 ,X6#, X85@X5 ,X6#,
~12!

X95@X5 ,X4#, X105@X4 ,X9#, X115@X5 ,X9#.

The integrability conditions impose the following restrictions onXi ( i 50,...,11):

@X2 ,X3#50, @X5 ,X0#50, @X3 ,@X3 ,X6##50, @X2 ,@X4 ,X3##50,

@X3 ,@X4 ,X3##50, @X3 ,@X4 ,@X4 ,X3###50, @@X4 ,@X4 ,X3##,@X3 ,X6##50,

2X61@X5 ,X2#50, @X3 ,X0#2@X5 ,X8#50, @X4 ,X2#14@X4 ,X3#50,

@X4 ,X0#2@X5 ,X11#50, 3X62 1
2 @X5 ,@X3 ,X6##2@X3 ,X8#50,

3X223@X4 ,@X4 ,X3##2@X2 ,X6#1@X3 ,X6#50,

X712@X5 ,@X4 ,X3##2@X3 ,X9#50,

@X2 ,X0#22@X4 ,X11#2@X5 ,X8#2@X5 ,X10#50,
~13!

@X2 ,@X5 ,@X4 ,X3###1@X2 ,X7#1 1
2 @X2 ,@X2 ,X9##50,

3X92@X3 ,X11#2@X4 ,X8#2@X5 ,X7#22@X5 ,@X5 ,@X4 ,X3###50,

@X3 ,X7#1 1
2 @X4 ,@X3 ,X6##1@X3 ,@X5 ,@X4 ,X3###50,

X92 1
2 ~@X2 ,X11#1@X4 ,X8#1@X4 ,X10# !2 1

3 ~@X5 ,@X5 ,@X4 ,X3###1@X5 ,X7# !2 1
6 @X5 ,@X2 ,X9##

50,

1
2 @X2 ,X5#1 1

4 ~@X2 ,X8#1@X2 ,X10# !1 1
3 ~@X4 ,X7#1@X4 ,@X5 ,@X4 ,X3### !1 1

6 @X4 ,@X2 ,X9##50,

3X62 1
2 ~@X2 ,X8#1@X3 ,X8#1@X3 ,X10# !2@X4 ,X7#22@X5 ,@X3 ,X6##2@X4 ,@X5 ,@X4 ,X3###

22@X5 ,@X4 ,@ ,X4 ,X3###50,

8@X4 ,X3#1 1
4 @X2 ,@X2 ,X9##22@X4 ,@X4 ,@X4 ,X3###2 1

6 ~@X3 ,@X2 ,X9##111@X4 ,@X3 ,X6## !50..

Together with the Jacobi identities we obtain further relations

@X2 ,X6#12@X3 ,X6#50, @X4 ,X11#2@X5 ,X10#50,

@X5 ,@X3 ,X6##2@X3 ,X8#50, @X2 ,X8#2@X5 ,@X2 ,X6##50,

@X5 ,@X4 ,X3##1@X3 ,X9#2X750,
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24@X5 ,@X4 ,X3##1@X2 ,X9#12X750,

@X2 ,@X5 ,@X4 ,X3###12@@X4 ,X3#,X6#50,

@X3 ,@X5 ,@X4 ,X3###2@@X4 ,X3#,X6#50, ~14!

@X3 ,@X2 ,X9##2@X2 ,@X3 ,X9##50,

@X4 ,X3#50, @X2 ,X7#50, @X3 ,X7#50,

@X3 ,X10#50, @X4 ,X7#50, @X5 ,X7#5X9 ,

@X2 ,@X2 ,X9##50, @X4 ,@X3 ,X6##50,

@X5 ,X8#1@X5 ,X10#50.

In order to find the Lie algebra generated byF and matrix representations of the generat
$Xi%0

11, we follow the strategy of Dodd–Fordy.3 First we reduce the number of elements. By usi
Eqs.~12!–~14!, we getX2522X3 . Next, we locate nilpotent and neutral elements. The Eqs.~12!
and ~13! together withX2522X3 give that@X5 ,X3#5X6 and @X3 ,X6#52X3 , henceX3 is nil-
potent andX6 is the neutral element. Let us note that the system of equations in~1! has the
following scale symmetry:

x→l21x, t→l23t, u→l2u, w→lw, ~15!

which implies that the elementsXi must satisfy

X0→l3X0 , X3→l21X3 , X4→X4 , X5→lX5 ,

X6→X6 , X7→X7 , X8→lX8 , X9→lX9 , ~16!

X10→lX10, X11→l2X11,

wherel is a constant. By using the basis elements, we try to embed the prolongation algeb
sl(n11,c). Starting from the casen51, we found that sl(2,c) cannot be the whole algebra. Th
simplest nontrivial closure is in terms of sl(3,c). We take

X35e2a1
, X65h1 , ~17!

where we use the standart Cartan–Weyl basis7 of A2 . Together with the scale symmetries we fin
that

X0524c2
2l4e2a1

236c1
3l3~h112h2!24c2l2ea1

,

X45d1~h112h2!1d2l21ea2
1d3l2e2a12a2

,

X55ea1
1c1l~h112h2!1c2l2e2a1

,

X75d2l21ea2
1d3l2e2a12a2

,

~18!
X8522ea1

12c2l2e2a1
,

X95d2l21ea11a2
2d3l2e2a2

13c1d2ea2
23c1d3l3e2a12a2

,
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X1052d2d3l~h112h2!26c1d2d3l2e2a1
,

X115~9c1
21c2!d2lea2

16c1d3l3e2a2
16c1d2ea11a2

1~9c1
21c2!d3l4e2a12a2

,

where$ci%1
2 and$di%1

3 are constants with conditions

d1d250, d1d350, d2d356c1 , c259c1
2 . ~19!

We choosed150, c15d251. So that,X75X4 and X05236l2X5 . Then, we obtain the matrix
representations of the generatorsXi as

X35S 0 0 0

0 0 0

1 0 0
D , X45S 0 0 0

2l21 0 0

0 6l2 0
D ,

X55S 2l 0 1

0 2l 0

9l2 0 2l
D , X65S 1 0 0

0 0 0

0 0 21
D ,

~20!

X85S 0 0 22

0 0 0

18l2 0 0
D , X95S 0 6l2 0

23 0 l21

0 218l3 0
D ,

X105S 6l 0 0

0 212l 0

236l2 0 6l
D , X115S 0 236l3 0

218l 0 6

0 108l4 0
D .

By substituting the matrix representations of the generators into Eqs.~10! and ~11! we can con-
struct the Lax pair,Cx5XC, C t5TC, for the system~1!, with the following matricesX andT:

X5S l wl21 w22u29l2

0 22l 26wl2

21 0 l
D , ~21!

T5$$p1wq13lw2236l3,(w312uw2s)l2123q218lw,r 1ws1q222u21w41w2u29l2

w2118l2u1324l4%, $6ql2236l3w,26lw2172l3, 6(s2w322uw)l2 2 18ql31108l4w%,
$2w222u136l2,ql2116w,2p2wq13lw2236l3%%, where the matrixT is written by rows
andX52F†, T52G†, C5y†.

The forms ofX andT are unusual in the sense of the dependence onl. It is possible to obtain
equivalent matrices by the gauge transformation,

X85SXS21, T85STS21, ~22!

where

S5S 1 0 0

0 0 21

0 l21 0
D . ~23!

The result is
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X85S l u2w219l2 w

1 l 0

0 6lw 22l
D , ~24!

T8 5 $$p1wq13lw2236l3, 2r 2ws2q212u22w42w2u19l2w2218l2u2324l4, w3

12uw2s23ql218l2w%, $w212u236l2, 2p2wq13lw2236l3,2q26wl%, $6ql
236l2w,26(s2w322uw)l118ql22108l3w,26lw2172l3%%.

IV. CONCLUDING REMARKS

The matrixX8 gives us exactly the spectral problem for the KdV equation whenw50. ButX8
does not reduce to the one for mKdV equation whenu50. This result should be expected becau
the Kersten–Krasil’shchik system, whenu50, gives not only mKdV equation, as stated in Ref.
but also an ordinary differential equation inw. Finally, we note that the Lax pair obtained from~7!
with ~24! is a true Lax pair since the parameterl cannot be removed fromX8 by a gauge
transformation, as can be proven by a gauge-invariant technique.8
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