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Integrability of Kersten—Krasil'shchik coupled KdV—-mKdV
equations: singularity analysis and Lax pair
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The integrability of a coupled KdV—-mKdV system is tested by means of singular-
ity analysis. The true Lax pair associated with this system is obtained by the use of
prolongation technique. @003 American Institute of Physics.
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I. INTRODUCTION

Very recently, Kersten and Krasil'shchikonstructed the recursion operator for symmetries of
a coupled KdV—mKdV system

Up= — Uy gt BU Uy — SWWy i — Wy Wy + 3U, W2+ BUWWY,

)

Wi = — Wyt 3W2W, + 3Uw, + 3u,w,

which arises as the classical part of one of the superextensions of the KdV equation. In this work,
we study the integrability of this system using the Painlésst. Then, we use Dodd—Fordy
algorithm of the Wahlquist—Estabrobfrolongation technique in order to obtain the Lax pair. We
find a 3x3 matrix spectral problem for the Kersten—Krasil'shchik system.

II. SINGULARITY ANALYSIS

Let us study the integrability ofl) following the Weiss—Kruskal algorithm of singularity
analysis*® The algorithm is well known and widely used, therefore we omit unessential compu-
tational details.

First, we find that a hypersurfaegg(x,t) =0 is noncharacteristic for the systeit) if ¢,#0
and setp,=1 without loss of generality. Then we substitute the expansions

U=Ug(D) ¢+ +u ()" "+,
2
W=wWo(t) P+ +w (D) g Pt @

into (1), and find the following branches.e., admissible choices af, 8, uy, andwg), together
with the positiong of resonanceg$where arbitrary functions can enter the expansions

a=—2, B:_l, Uozl, Wo:ii,

)
r=-—1,1,2,3,4,6,
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a=—2, B:_l, U0:2, W0:i2i,

4
r=-2,—-1,3,3,4,8,
a==2, B=2, Up=2, Vwy(t),
)
r=-4,-1,0,1,4,6,
a:_zy B:31 u0:21 VWO(t)y
r=_51_la_11014161 (6)

besides those which correspond to the Taylor expansions governed by the Cauchy—Kovalevskaya
theorem.

The branch(3) is generic: the expansion®) with (3) describe the behavior of a generic
solution near its singularity. The nongeneric branct#®s(5), and(6) correspond to singularities
of special solutions. The branché&d and (5) admit the following interpretation, in the spirit of
Ref. 6: (4) describes the collision of two generic pol€® with same sign ofw,, whereas(5)
describes the collision of two generic pol& with opposite signs oW,. The branch6) corre-
sponds ta5) with wy—0.

Next, we find from (1) the recursion relations for the coefficients(t) and w,(t) (n
=0,1,2,..) of theexpansiong?2), separately for each of the branches, and check the consistency
of those recursion relations at the resonances. The recursion relations turn out to be consistent,
therefore the expansioni®) of solutions of(1) are free from logarithmic terms. We conclude that
the system(1) passes the Painlevest for integrability successfully and must be expected to
possess a Lax pair.

IIl. PROLONGATION STRUCTURE

By introducing the variablep=u,, q=w,, r=py, S=0qy, we assume that there exist
X N matrix functionsF andG, depending upomn,w,p,q,r,s, such that

Yx= _yF!
(7
Yi= _yG!

wherey is a row matrix with elementg®, A=1,...N. The system of equations i) can be
represented as the compatibility conditions(of if

Fi—G4+[F,G]=0, (8)

where[F,G] is the matrix commutator. This requirement gives the set of partial differential
equations fo- andG:

Fo=Fq=F,=F=0, F,=—G,, 3wF,+F,=—Gs,
9
PG, +0G,+rG,+sG,—3(2up—gs+pw?+2uwq)F,— 3(w?q+ug+pw)F,—[F,G]=0.

Next, we integrate equatior{9) and find

w3 w2
F:<UW_ 7)Xl+ 7X2+UX3+WX4+X5, (10)

whereXq,X,,X3,X4,X5 are constant matrices of integration. It is immediately seenXhas in
the center of prolongation algebtaience, we can take it to be zero and fiGdas
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2

G=(—r—ws—g?+2u?—w*—w?u)X5— (s—W3—3uw) X, — (p+wQq) Xg— UWX;— - +u|Xg

w2
—QgXg— 7X10_WX1DL Xos (11

where X, is a constant matrix of integration. The remaining elements are
Xe=[Xs5,X3], X7=[X4,Xg], Xg=[X5,Xg],
(12
Xo=[Xs5,Xs],  X10=[X4,Xg],  X11=[X5,Xq].

The integrability conditions impose the following restrictionsXn(i=0,...,11):
[X2,X3]=0, [X5,X0]=0, [X3,[X3,X6]]=0, [X3,[X4,X3]]=0,
[X3,[X4,X3]]=0, [X3,[X4,[X4,X3]1]1=0, [[X4,[X4,X3]],[X3,X6]]1=0,
2Xe+[X5,X2]=0, [X3,X0]=[X5,Xg]=0, [X4,X5]+4[X4,X3]=0,
[X4,X0]—[Xs5,X11]=0, 3Xg— %[XS:[X31X6]]_[X3:X8]:01
3X5 =3[ X4,[ X4, X3]1=[X2,Xe] +[X3,X6] =0,

X7+ 2[Xs,[ X4,X3]]1—[X3,X9]=0,
[X2,X0]=2[ X4, X11] —[X5,Xg] —[X5,X10]=0,
(13
[X2.[Xs,[Xq, X3]]1+[ X2, X714+ 5[ X2,[X2,Xg]1=0,
3Xg—[X3,X11] = [X4,Xg] = [X5,X7] = 2[ X5,[ X5,[ X4,X3]]]=0,
[X3,X7]+ 3[Xa,[ X5, X611+ [X5,[Xs5,[ X4, X3]1]=0,
Xo= 3 ([X2,X11]+[ X4, Xg]+[ X4, X10]) = 3 ([ X5.,[ Xs5,[ X4, X311+ [ X5, X71) — &[Xs5,[ X2, Xg]]
=0,
2[ X2, Xs]+ F([ X2, Xg]+[ X2, Xa0l) + 5 ([Xa, X71+ [Xa,[Xs5,[ Xa, Xa]11) + 5[ Xa,[X2,Xe]1=0,
3Xe— 3([X2,Xg]+[ X3, Xg]+[ X3, X10]) = [ X4, X7] = 2[ Xs5,[ X3, X6 11— [X4.[X5,[ X4, X3]]]
—2[X5,[X4,[,X4,X3]]]=0,
8[ X4, Xa]+ 3[X2,[X2,Xg]1—2[X4,[X4.,[ X4, X3]11— 5 ([ X3.[ X2, Xo]]+ 11 X4,[ X3,Xe]]) =0..
Together with the Jacobi identities we obtain further relations
[X2,X6]+2[X3,X6]=0, [X4,X11]=[X5,X10]=0,
[Xs5,[X3,Xe]]=[X5,Xg]=0, [X3,Xg]—[X5,[X2,X]]=0,

[Xs,[X4,X3]]+[X3,Xe] = X7=0,
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—4[Xs,[X4,X3]]+[X2,Xe]+2X7=0,
[X2,[Xs5,[X4,X3]]1]1+2[[X4,X3],X6] =0,
[X3,[X5,[X4,X3]1]1=[[X4,X3],X6]=0, (14

[X3,[X2,Xe]] = [X2,[X3,Xe]]=0,
[X4,X3]=0, [X3,X7]=0, [X3,X7]=0,
[X3,X10]=0, [X4,X7]=0, [Xs5,X7]=Xo,
[X2,[X2,Xg]]=0, [X4,[X3,X6]]=0,
[Xs5,Xg]+[Xs5,X10]=0.

In order to find the Lie algebra generated Byand matrix representations of the generators
{Xi}él, we follow the strategy of Dodd—FordyFirst we reduce the number of elements. By using
Eqgs.(12—(14), we getX,=—2X5. Next, we locate nilpotent and neutral elements. The BEd3.
and (13) together withX,= —2X3 give that[ X5,X3]=Xg and[ X3,Xg]=2X3, henceXj is nil-
potent andXg is the neutral element. Let us note that the system of equatiof¥) ihas the
following scale symmetry:

X—A"IX, t—=AT3t, u—N%u, w—w, (15)
which implies that the elemeni§ must satisfy

Xo—A3Xo, Xz—N X5, X;—Xg, Xs—AXs,
X6—>X6, X7—>X7, X8—>)\X8, Xg—>)\Xg, (16)
X109 M X109, X11—N?X13,

where\ is a constant. By using the basis elements, we try to embed the prolongation algebra into
sl(n+1,c). Starting from the case=1, we found that sl(2) cannot be the whole algebra. The
simplest nontrivial closure is in terms of sI¢3, We take

X3:e,a1, Xezhl, (17)

where we use the standart Cartan—Weyl Hasfi$\,. Together with the scale symmetries we find
that

Xo=—4ci\%e_, —36CciN3(hy+2hy) —4co\%e,
X4=dy(hy+2hy) +dN " te,,HdshPe o,
Xs=e,, +Ci\(hi+2hy) +c\%e
X7=d\ e, tdaN%e
(18)

Xg=—2e, +2C\%_,,

ng dz)\ile - ds)\ze_ ‘12+ 3C1dzea2_ 301d3)\se_ ay—ay

ajta,
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XlO: - d2d3)\(h1+ 2h2) - 6C1d2d3)\2e_ ay
2 2
X11=(9¢i+Cp)dohe,, +6C1dzh e, +6C10z€, 1o, (9CT+Co)daN"e 4 o,
where{c;}? and{d;}? are constants with conditions

d1d2=0, d1d3=0, d2d3=6C1, Cz=9C§. (19)

We choosed; =0, ¢;=d,=1. So thatX;=X, and X,=—36\%Xs. Then, we obtain the matrix
representations of the generatotsas

0 0O 0 0 O
Xs=[ 0 0 0|, X,=[ -x* 0 0],
100 0 6A2 0
-A 0 1 10 O
Xs=| 0 20 0 |, Xe=|0 0 0 |,
9\2 0 -\ 0 0 -1
(20
0 0 -2 0 612 0
Xg=| 0 0 0 [, Xo=| -3 0 N
18\2 0 0 0 -18° 0
(% 0 0 0 -360% 0
—36\? 0 N 0 108+ 0

By substituting the matrix representations of the generators into (E§sand(11) we can con-
struct the Lax pair¥,=XW¥, ¥,=TWV, for the systen(1), with the following matriceX andT:

A owaTl ow?—u—9a?
X=[ 0 —2n  —6w\? (21)
-1 0 N

T={{p+wg+3Aw?—36\3,(W3+2uw—s)\ "1 —3q—18\w,r + ws+q?— 2u?+w*-+w?u—9\?2
w2+ 18\ 2u+ 3244}, {6gA2—36)\3w, —6AW2+ 7203, 6(s—w3—2uw)A? — 18\ 3+ 108\ “w},
{—w2—2u+36\%,gr "1+ 6w, — p—wg+ 3Aw?— 3613}, where the matrix is written by rows
andX=—-F', T=-G', v=y".

The forms ofX andT are unusual in the sense of the dependenck. dinis possible to obtain
equivalent matrices by the gauge transformation,

X'=SXS1, T'=STS1 (22
where
1 0 0
0O Nt o0
The result is
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N u—w2HON?  w
x'=| 1 N o |, (24)
0 6AW —2\

T ={{p+wqg+3Axw?—36\3, —r—ws—g?+2u?—w*—w2u+9\2w?—18\%u—324% w?
+2uw—s—3gr—18\2w}, {w?+2u—36\2, —p—-wqg+3Aw?—36\3,—q—6w\}, {6g:
—36\2W, — 6(S—W3—2uw)\ + 189A%— 108\ 3w, — 6AW?+ 72\ 3}}.

IV. CONCLUDING REMARKS

The matrixX' gives us exactly the spectral problem for the KdV equation wher0. But X’
does not reduce to the one for mKdV equation when0. This result should be expected because
the Kersten—Krasil'shchik system, whar- 0, gives not only mKdV equation, as stated in Ref. 1,
but also an ordinary differential equationvin Finally, we note that the Lax pair obtained frai)
with (24) is a true Lax pair since the parametercannot be removed fronX’ by a gauge
transformation, as can be proven by a gauge-invariant techfique.
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