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In this work, we give a classification of coupled Korteweg—de Vries equations. We
found new systems of equations that are completely integrable in the sense of
Painleve. © 1997 American Institute of Physics. [S0022-2488(97)01407-2]

I. INTRODUCTION

The coupled Korteweg—de Vries (KdV) type equations have been the most important class of
nonlinear evolution equations and are extensively studied by many authors.!™® Recently,
Svinolupov®!? has introduced a class of integrable multicomponent KdV equations associated
with Jordan algebras. We have shown that the Jordan—KdV systems have a Painlevé property.!!
Very recently,'? Svinolupov’s work was extended on KdV systems to a more general form,

0= b} Ahoex T Sj10' (1)

where i,j,k=1,2,...,N, g' depend on the variables x,t, and s}k,b} are constants. It is shown that
there are infinitely many integrable subclasses of (1) having recursion operators,

R|=bjD?+a),g"+cjoxD ' +F|;q'D *g"D Y, (2)

where aj,, cj and Fjy; are constants with
i i i _ gl
Sjk=atCj,  Fij=—Fjjk- 3)

In this work we applied the Painlevé test for PDE introduced by Weiss et al.®® to find the inte-
grable subclasses of (1) when N=2. We consider a system of coupled KdV equations in the form

Ut: 771Uxxx+ 772vxxx+ C1UUX+ Czul)x“r‘ C4U UX+ C3UUX,

(4)
V= M1V yux T ol T dquuy+douv, +dyuuy+divoy,
where

1 1 2 2 1
u=q', v=¢d? m=Db1, m=b;  w,=by, wi=b3 ci=spy,

_ ol _d _d _ 2 2 _2 _2
C;=Sip C4=Sp, C3=Sp, d1=Sy, dy=sj, dy=sj, d3=sp,.

The main problem is to find the conditions satisfied by 7, w,, ¢,, d,, 1=1,2; n=1,23,4) in
order to have P type-subclasses of (4).

IIl. PAINLEVE ANALYSIS

Let ¢=0 be the singularity manifold of (4). By setting u~uy¢*1, v~vy¢$*? into the leading
terms of (4), we have a;=a,=—2 and the equations for uy and vy,

USC1+ Uguo(Cot+Cy) +v5C3+ 12005 (Ug 71 +0072) =0, (5)
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ugd; + Uguo(da+dy) +v5da+ 12¢2(Uguy +vouz) =0. (6)

To determine the resonances we set U~Uqg¢ 2+ B1¢™ 2, v~vod 2+ Bo¢" 2 into the leading
terms of (4) and obtain a sixth-order polynomial equation in r. One root of this polynomia must
be —1. Substituting r = — 1 into the polynomial, we have the condition

12¢3{Uo( 7201 = 1C1) +vol 72(dy+dy) — 7305+ Capp— ma(Ca+Cq) 1}

+vo[Up(C3d; — C103) —vda(Co+ Cg) +vCa(da+dy) ] — 14465 ( 1401 — M2pt2) = 0.

(7
Together with (5), (6), (7) the equation for resonances becomes
(r+1)(r =4)(r = 6){ (7101 — 72112) (3= 9r®) 3+ 1[38( 1301~ Mapiz) b
+Ug( 7102~ 7201+ 11C1— p2Co) T vo( 7103~ 12ds+ 11Cs— p2C3) ]
+2[—36( 711~ M2m2) by Uo[ 71(da+dg) = 2( 7201 — p1C1) — pa(Cr+Cy) ]
+vo[2(Capma—d371) + 72(da+ds) — pa(CatC4) ]I} =0. 8

The three of the roots are —1,4,6. The others, say rq,r,,r3, must be integers. Thisis possible if

(mam1— Mat2) G5(I 1T of 3= 72) = 2Ugl 71 (da+dy) — 2(7dy — waCe) — pa(Ca+Cy) ]
+2vo[2(Cauy—d371) + 72(da+ds) — ma(Co+€4) ] =0, 9

2
(1= mapep) P(rar 2+ 1ol g+ 13— 38) —Ug( 710, — 7,01+ w1C1 — uoCo)

—vo(7103— 7204+ u1Cs— u2C3) =0, (10)

(7111— 1mope2)(r1+r,+r3—9)=0. (11)

At this point we have to divide the systems in (4) into two parts.'? These are the nondegenerate
systems where (7111~ 7212) #0 and the degenerate systems where (71— 7ou2) =0, that is,
they reduce to lower-dimensional systems.

For the nondegenerate systems, the equation (11) implies that we have to have r{+r,+r;
=9, which leads the following.

Case (1): r1=0,r,=0, rz=9. Inthiscase ug and vy must be arbitrary. But (9) and (10) imply
that this is impossible unless (71— 7o12) =0. Thus, test fails.

Case (2): r1=0, r, may take one of the values (1,2,3,4), r3;=9—r,. In these cases one of the
functions ug or vy must be arbitrary. We assume that ug is arbitrary and vy= a¢)2<+ B, where o
and B are independent from ¢, . Then the equations (5), (6), (7), and (9) are satisfied if

=0 —0 a=— 12p __ UoCs :(Cz+C4)
TS MR dg ' (Catcy)’ n dg
o= e[ (Ca+cy)(dy+dy)—cydg]/da(catcy), (12)

dlzcl[(C2+C4)(d2+d4)_Cld3]/(CZ+C4)2, where d37&0, C2+C47&0, ,LL]_?EO

These are the only exceptable solutions; all others violate the condition (74— nou0) # 0. For
the above values of parameters we obtain the solutions of Eq. (10), which depends on r,. Thus,
we have four subcases with resonances (0,r,,9—r,,—1,4,6). To discuss the arbitrariness of the
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functions corresponding to resonances, we substitute u= 2?10 Uj P2 v= 2?:0 vj $ "2 into (4),
for each case separately, and obtain the recursion relations for u; and v;. By solving these
relations we have the following results.

Case (2a): r=0,1,8,—1,4,6, c,=—3C,, C;=—C,(3d,+d,)/(2d3). This test fails, because
the functions corresponding to resonances 0, 1, 6 are arbitrary without additional conditions, but
U, or v, is arbitrary if d3=c,(3d,+d,)/(d,—d,) and ug or vg is arbitrary if d,=d,, which
implies (7,11~ 7212) =0.

Case (2b): r=0,2,7,—1,4,6, c,=0, c;=c,d,/d3. The equations pass the test if c,=d3,
d,=0. Thus the system,

U= tqUyyy t+douy u+dsuy v, (13)

U= p1Vxux T dovy Ut dgoy v,

is of the P type, where ug,v,,Uys,vg,U; are arbitrary functions of the solutions.

Case (2¢): r=0,3,6,—1,4,6, c,=2c,, c;=3C,(2d,—d,)/d;. The test fails, since the equa-
tions under investigation would be of the P type if x4=0 or d;=0, which violates the condition
(71— mope2) #0.

Case (2d): r=0,4,5,—1,4,6, c,=c,, d,=d,. In this case we obtained two subclasses of
equations that are of the P type. For the first, we have d;=2c, and ¢;=2d,,

Up= 1Uyext 2 dauyu+cy(uyw +Uvy), (14)

U= U1V xux T da(Uyv +Uvy) +2C4050,

which is the Jordan KdV system given by Svinolupov.®° For the second, we have d;= —c, and
C]_: - d4 f

U= — 23 Uyxy— AUy U+ C4(Uyv + Uny), (15)

3d, 3d2
V1= = 5 Uxx T L10xx ™ 72 UxU+04(Uxw +Uvy) = Cauy0.
2C4 4C4

For both of subclasses ug,uU,,v4,Us,vg ae arbitrary functions of the solutions.

Case (3) r1=1, r, may take one of the values (1,2,3,4), r3=8—r,.

In these and the following cases, Egs. (9) and (10) imply that ug and v, must be in the form ug
=8¢2, vo= a2, where a and & are constants. Using these in Egs. (5), (6), (7), (9), (10), we find
the conditions satisfied by #,,u,,c,,d,,a,d for different values of r, and r ;. Thus we have four
subcases.

Case (3a): r=1,1,7,— 1,4,6. Substitutingu=3/_, uj¢! %, v=37_y vj¢!~ 2 into (4), wefind
that u; and v4 are arbitrary functions if 67+ a7n,=0, du,+ au,=0. The solutions of these
equations violate the condition (71— 7o12) # 0, and the test fails.

Case (3b): r=1,26,—14,6. Substituting u=="_, uj¢! 2, v==_; v;¢) 2 into (4) and
requiring that Egs. (5), (6), (7), (9), and (10) have to satisfy, we observe that two subclasses of (4)
pass the Painleve test. The first subclass is

127]1 50%

U= 71 Uypx— > UyU+ 2C,U,0 + CouU— 6_7;1 Uy,

(16)

_ 67,
Ut= MUxxx — 5 vyU+Couy,
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and the second subclass is

6C4 12771
U= 71 Uyyx— 7 VT T UyU-+ C4uyw +2C4vU+Cauyv,
17)
127]1
V= — 270 Uxxx T 5 UyU—Cauy0,

where, in both cases, «=0, §#0 and v4,v,,Us,Ug,v¢ ae arbitrary functions. We observe that the
second subclass reduces to the equations given by Hirota—Satsumal?* if ¢,=0, 6= —2,

U= 71 (Uyyx T BUU) + C3v,0, (18)
vi=—271(vyxxt3vxU), Where 7]1:a=%, c3=2b.

Case (3c): r=1,3,5,—1,4,6. In this case we obtain the system of equations passing the P test,

6¢y 36¢? 3c? 6c2
U= — == Uyt ——— Uy T C1UU— —— U0 — — v, U,
12 4d, d; d;
(19)
5d, 78c, 6¢c2
=— —— Uy~ —=— Uyxx T d1UU—CqU 0 — 2C0U— — vy,
Ut 10 xxx 12 Uxxx X d,

where =0, §#+0 and v,,v3,U,,Us,Ug are arbitrary functions of the solutions.

Case (3d): r=1,4,4,—1,4,6. Thistest fails since the number of arbitrary functionsis less than
the number of resonances.

Case (4): r1=2, r, may take one of the values (2,3), r3=7—r,. For these values of reso-
nances we have two subcases.

Case (4a): r=2,2,5,—1,4,6. In order to have arbitrary functions at r =2, which are u, and
v,, the conditions 71+ an,=0, Su,+ au;=0 must hold. But the solutions of these violate the
condition (71— 7o12) #0. The test fails.

Case (4b): r=2,3,4,— 1,4,6. In this case we have two subclasses of (4) passing the P test: The
first subclass is

1
U= 91Uxux T 720 xxx — 52 [12(6m1+ an,) + a(26C,+ acz) Juyu+ Co(Uyw + Uvy) + Cauy,

r r
Ut:K MoUsxx T 1Usux T A [CouxU+C3(Uyw +vyu)]
(20)

26Cy
+{cot A [6(Sum1+ amnp)+a(dCy+ acs) vy,
where
I'=—a[a(8c,+acy)+126u,], A=38%(8C,+acy+127,)
and

(6Co+ acy)[ 8(my— p1) +2ma]+ 129,(6n1+ any)=0.

The second subclass is
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1 5C2
U= 71Uxxx T 720 xxx — 52 [12(6m1+ any) + dCra]uyu+Co(Uyv + Uvy) — o UxU,

o o
VT [6(71— 1) + maa]Uxuxt 20 sxx— B [1275( 871+ amp) + 8°Cour]uu (21)

Copy

1)
+ u,w +ov,U)— —— Coruyv,
(x x) 7]2a2X

where, in both cases u,, Uz, U4, v4, Ug are arbitrary functions. If we substitute c,=a,;, c3
=—ag, 71,=1, u1=n,=0, §=(aga—6)/a;, a=6/(ag*ia;) the first subclass reduces to the
system given in Ref. 12,

U= Uyt (@gUtav)uy+(au—agu)vy, 22)

U= Uy T (8gu+a1v)vy+ (agv —aiu)uy .

Case (5): r1=3, r,=3, r3=3. In this case test fails, since the number of resonances at r
=3 is higher than the number of arbitrary functions, which are uz and vs;.

In order to discuss the degenerate systems, let us assume that w,= u;=0; then from (8) we
have the relation vo=A\ug.

We know that the roots of (8) must be integers and three of the roots are — 1, 4, 6. Let the
fourth root be o. When o+ 0, we can choose Uy= y¢2. Substituting u, and v, into Egs. (5) and
(6), we have

dj_: _(d2+ d4+ dg)\))\,

(23)
7= —[127,N +C1y+(Co+Cy) YA +CgyN2]/12.
Together with these equations, the fourth root of (8) is
o=2(d,+ds+2d3N\)/(dy+d3\), (24)
which can be solved for \,
A=[(2=0)dy+2d,])/(c—4)ds, (25)

where d3;#0, o#4. In this work we discuss the cases when o=1,2,3,4,5,6 and obtained the
following.
Case (d1): r=1, —1,4,6.

Ui = — Cq YUy + 12750 4+ 12(C U+ Cqv ) Uy + 12(Cou+Cv) vy, 26)

vi=dsuw —(2dsu—dzv)vy,

Whefe 7]2:_'}/(Cz+2C4)/36, C1:(C2+2C4)d4/(C2_C4), C3:(C2+2C4_3d3)(C2_C4)/9d4,
d,=—2d,, and v, Ug, Ug are arbitrary.
Case (d2): r=2, —1,4,6.

Ci1y
U= — 12 Usxx T 72U xxx H (C1U+ C40 ) Uy + (CoU+Cav) vy,
27

Ut:(d2U+d31))UX,
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where d,=0 and u2, Uy, Ug are the arbitrary functions.
Case (d3): r=3, —1,4,6.

Cry
U= — 12 Usxxt 7720 xxx T (C1 U+ C4v ) Uy + (Cou+C3v) vy,
(28)
Ut:d4ux v+(2d4u+d30)vx,
where dy=2ds, 127,C1+ y[C1(2C2—C4) —3d4(C2—2C4)]=0, dy[ —1275(C2—2C4) + y(C1C3

—C,d3+2c,d3)]=0, and v, Uy, Ug are arbitrary.

Case (d4): r=4, —1,4,6,d,=d,.

Up= 171 Uyxx T 720 xxx + C1UxU+ Co(Uyw +v,U) + Cvyv, (29)
vy=duy, u+dy(uw +ov,u)+dsvy, v,

where

C4=Cp, di=—(2dp+ds\)N, 7= —[12mN +Cyy+2CyA+C3pN?)/12,  and  y
=127m,{d,(d,— 1) +dp\ (2d3—3C,) — N[ dg(Co—d3) + 2C4d,] — Cadah 3H{c,Cod,
+2d,\ (C1C3+ C3) + Cah2(C1d3+ 5C,d,) + 230 3(Codg + C3d,) + C5dsh Y, Uy, v4, Ug are arbi-
trary.

As a specid case, if A=0, cz—ds 0,d,=c3=2, ¢c,=6, 7,=0, y=—2, the set of equations
(30) reduces to the one given by Ito,

U= Uy +6U U+ 20,0, (30)
UV=2(Uv)y.

Case (d5): r=5, —1,4,6. In this case we have two subclasses passing the P test: The first one
is

C1y
U= — 12 Usxxt 720 xxx H (C1U+C4v ) Uy + (Cou+C3v) vy,

(31)
Ut:dllux v +(d2U+d3U)UX y

where d,= 3d,/2, A=0, and the second one is
1
U= 12d2 [(12775+C4y)(3dy—2d,)d3— (3d,—2d4)%Cay— 3d5(dy— dg) Ty 720 xxx

1
+ d_ {[(3d2_2d4)C2+ 3d3(d2_d4)]U+C4d3U}UX+(02U+C31})UX, (32)
3

1
V= — d_3 [(3d2—2d4)(2d2—3d4)u—d4d3v]ux+(d2u+d3v)vx,

where, in both cases, u,, Us, Ug are arbitrary.
Case (d6): r=6, —1,4,6.

Y
U= — 12d [cid3+(C, 204)(2d2_d4)]uxxx+Fds[(04_2C2)d3+(2d2_d4)03]vxxx

+(C1U+ C40) Uy + (CoU+ Cav )y, (33
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1
V= — d_3 [(2d,—d4)(dy—2d4)u—dy dgv Ju+ (du+dgv)vy,

where vy, Ug, vg are arbitrary.

. SUMMARY

We found new coupled system of equations having the Painleve property. Some of them
reduce to the known equations by special choice of parameters. Some of these systems may be
related by simple transformations. Furthermore, the problem studied in this work may be consid-
ered in the framework of the perturbative Painleve approach given in Ref. 15. In most cases the
recursion relations and the expressions for u; and v; are very extensive, and therefore are not
given in this work.
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