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In this work, we give a classification of coupled Korteweg–de Vries equations. We
found new systems of equations that are completely integrable in the sense of
Painlevé. © 1997 American Institute of Physics. @S0022-2488~97!01407-2#

I. INTRODUCTION

The coupled Korteweg–de Vries ~KdV! type equations have been the most important class of
nonlinear evolution equations and are extensively studied by many authors.1–8 Recently,
Svinolupov9,10 has introduced a class of integrable multicomponent KdV equations associated
with Jordan algebras. We have shown that the Jordan–KdV systems have a Painlevé property.11

Very recently,12 Svinolupov’s work was extended on KdV systems to a more general form,
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In this work we applied the Painlevé test for PDE introduced by Weiss et al.13 to find the inte-
grable subclasses of ~1! when N52. We consider a system of coupled KdV equations in the form

u t5h1uxxx1h2vxxx1c1uux1c2uvx1c4vux1c3vvx ,
~4!

v t5m1vxxx1m2uxxx1d1uux1d2uvx1d4vux1d3vvx ,

where
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2, c15s11
1 ,
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2 , d35s22
2 .

The main problem is to find the conditions satisfied by h l , m l , cn , dn , ~l51,2; n51,2,3,4! in
order to have P type-subclasses of ~4!.

II. PAINLEVÉ ANALYSIS

Let f50 be the singularity manifold of ~4!. By setting u'u0f
a1, v'v0f

a2 into the leading
terms of ~4!, we have a15a2522 and the equations for u0 and v0 ,
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u0
2d11u0v0~d21d4!1v0

2d3112fx
2~u0m11v0m2!50. ~6!

To determine the resonances we set u'u0f
22

1b1f
t22, v'v0f

22
1b2f

t22 into the leading
terms of ~4! and obtain a sixth-order polynomial equation in r . One root of this polynomial must
be 21. Substituting r521 into the polynomial, we have the condition

12fx
2$u0~h2d12m1c1!1v0@h2~d21d4!2h1d31c3m22m1~c21c4!#%

1v0@u0~c3d12c1d3!2v0d3~c21c4!1v0c3~d21d4!#2144fx
4~h1m12h2m2!50.

~7!

Together with ~5!, ~6!, ~7! the equation for resonances becomes

~r11 !~r24 !~r26 !$~h1m12h2m2!~r
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12†236~h1m12h2m2!fx
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2u0@h1~d21d4!22~h2d12m1c1!2m2~c21c4!#

1v0@2~c3m22d3h1!1h2~d21d4!2m1~c21c4!#‡%50. ~8!

The three of the roots are 21,4,6. The others, say r1 ,r2 ,r3 , must be integers. This is possible if

~h1m12h2m2!fx
2~r1r2r3272!22u0@h1~d21d4!22~h2d12m1c1!2m2~c21c4!#

12v0@2~c3m22d3h1!1h2~d21d4!2m1~c21c4!#50, ~9!

~h1m12h2m2!fx
2~r1r21r2r31r1r3238!2u0~h1d22h2d11m1c12m2c2!

2v0~h1d32h2d41m1c42m2c3!50, ~10!

~h1m12h2m2!~r11r21r329 !50. ~11!

At this point we have to divide the systems in ~4! into two parts.12 These are the nondegenerate
systems where (h1m12h2m2)Þ0 and the degenerate systems where (h1m12h2m2)50, that is,
they reduce to lower-dimensional systems.

For the nondegenerate systems, the equation ~11! implies that we have to have r11r21r3
59, which leads the following.

Case (1): r150, r250, r359. In this case u0 and v0 must be arbitrary. But ~9! and ~10! imply
that this is impossible unless (h1m12h2m2)50. Thus, test fails.

Case (2): r150, r2 may take one of the values ~1,2,3,4!, r3592r2 . In these cases one of the
functions u0 or v0 must be arbitrary. We assume that u0 is arbitrary and v05afx

2
1b , where a

and b are independent from fx . Then the equations ~5!, ~6!, ~7!, and ~9! are satisfied if

c350, h250, a52

12m1

d3
, b5

u0c1
~c21c4!

, h15
~c21c4!

d3
,

m25m1@~c21c4!~d21d4!2c1d3#/d3~c21c4!, ~12!

d15c1@~c21c4!~d21d4!2c1d3#/~c21c4!
2, where d3Þ0, c21c4Þ0, m1Þ0.

These are the only exceptable solutions; all others violate the condition (h1m12h2m2)Þ0. For
the above values of parameters we obtain the solutions of Eq. ~10!, which depends on r2 . Thus,
we have four subcases with resonances (0,r2,92r2 ,21,4,6). To discuss the arbitrariness of the
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functions corresponding to resonances, we substitute u5( j50
8 u jf

j22, v5( j50
8

v jf
j22 into ~4!,

for each case separately, and obtain the recursion relations for u j and v j . By solving these
relations we have the following results.

Case (2a): r50,1,8,21,4,6, c4523c2 , c152c2(3d21d4)/(2d3). This test fails, because
the functions corresponding to resonances 0, 1, 6 are arbitrary without additional conditions, but
u4 or v4 is arbitrary if d35c2(3d21d4)/(d42d2) and u8 or v8 is arbitrary if d25d4 , which
implies (h1m12h2m2)50.

Case (2b): r50,2,7,21,4,6, c250, c15c4d2 /d3 . The equations pass the test if c45d3 ,
d450. Thus the system,

u t5m1uxxx1d2ux u1d3ux v ,
~13!

v t5m1vxxx1d2vx u1d3vx v ,

is of the P type, where u0 ,v2 ,u4 ,v6 ,u7 are arbitrary functions of the solutions.
Case (2c): r50,3,6,21,4,6, c452c2 , c153c2(2d22d4)/d3 . The test fails, since the equa-

tions under investigation would be of the P type if m150 or d350, which violates the condition
(h1m12h2m2)Þ0.

Case (2d): r50,4,5,21,4,6, c25c4 , d25d4 . In this case we obtained two subclasses of
equations that are of the P type. For the first, we have d352c4 and c152d4 ,

u t5m1uxxx12 d4uxu1c4~uxv1uvx!,
~14!

v t5m1vxxx1d4~uxv1uvx!12c4vxv ,

which is the Jordan KdV system given by Svinolupov.9,10 For the second, we have d352c4 and
c152d4 ,

u t522m1uxxx2d4uxu1c4~uxv1uvx!,
~15!

v t52

3d4
2c4

uxxx1m1vxxx2
3d4

2

4c4
uxu1d4~uxv1uvx!2c4vxv .

For both of subclasses u0 ,u4 ,v4 ,u5 ,v6 are arbitrary functions of the solutions.
Case (3) r151, r2 may take one of the values (1,2,3,4), r3582r2 .

In these and the following cases, Eqs. ~9! and ~10! imply that u0 and v0 must be in the form u0
5dfx

2, v05afx
2, where a and d are constants. Using these in Eqs. ~5!, ~6!, ~7!, ~9!, ~10!, we find

the conditions satisfied by h l ,m l ,cn ,dn ,a ,d for different values of r2 and r3 . Thus we have four
subcases.

Case (3a): r51,1,7,21,4,6. Substituting u5( j50
7 u jf

j22, v5( j50
7

v jf
j22 into ~4!, we find

that u1 and v1 are arbitrary functions if dh11ah250, dm21am150. The solutions of these
equations violate the condition (h1m12h2m2)Þ0, and the test fails.

Case (3b): r51,2,6,21,4,6. Substituting u5( j50
6 u jf

j22, v5( j50
6

v jf
j22 into ~4! and

requiring that Eqs. ~5!, ~6!, ~7!, ~9!, and ~10! have to satisfy, we observe that two subclasses of ~4!
pass the Painlevé test. The first subclass is

u t5h1uxxx2
12h1

d
uxu12c2uxv1c2vxu2

dc2
2

6h1
vxv ,

~16!

v t5h1vxxx2
6h1

d
vxu1c2vxv ,
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and the second subclass is

u t5h1uxxx2
dc4
4

vxxx2

12h1

d
uxu1c4uxv12c4vxu1c3vxv ,

~17!

v t522h1vxxx1
12h1

d
vxu2c4vxv ,

where, in both cases, a50, dÞ0 and v1 ,v2 ,u4 ,u6 ,v6 are arbitrary functions. We observe that the
second subclass reduces to the equations given by Hirota–Satsuma1,2,14 if c450, d522,

u t5h1~uxxx16uxu !1c3vxv ,
~18!

v t522h1~vxxx13vxu !, where h15a5
1
2, c352b .

Case (3c): r51,3,5,21,4,6. In this case we obtain the system of equations passing the P test,

u t52

dc1
12

uxxx1
3dc1

2

4d1
vxxx1c1uxu2

3c1
2

d1
uxv2

6c1
2

d1
vxu ,

~19!

v t52

dd1
12

uxxx2
7dc1
12

vxxx1d1uxu2c1uxv22c1vxu2

6c1
2

d1
vxv ,

where a50, dÞ0 and v1 ,v3 ,u4 ,u5 ,u6 are arbitrary functions of the solutions.
Case (3d): r51,4,4,21,4,6. This test fails since the number of arbitrary functions is less than

the number of resonances.
Case (4): r152, r2 may take one of the values (2,3), r3572r2 . For these values of reso-

nances we have two subcases.
Case (4a): r52,2,5,21,4,6. In order to have arbitrary functions at r52, which are u2 and

v2 , the conditions dh11ah250, dm21am150 must hold. But the solutions of these violate the
condition (h1m12h2m2)Þ0. The test fails.

Case (4b): r52,3,4,21,4,6. In this case we have two subclasses of ~4! passing the P test: The
first subclass is

u t5h1uxxx1h2vxxx2
1

d2 @12~dh11ah2!1a~2dc21ac3!#uxu1c2~uxv1uvx!1c3vxv ,

v t5
G

D
h2uxxx1m1vxxx1

G

D
@c2uxu1c3~uxv1vxu !#

~20!

1$c21
2dc3

D
@6~dm11ah2!1a~dc21ac3!#%vxv ,

where

G52a@a~dc21ac3!112dm1# , D5d2~dc21ac3112h2!

and

~dc21ac3!@d~h12m1!12h2a#112h2~dh11ah2!50.

The second subclass is
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u t5h1uxxx1h2vxxx2
1

d2 @12~dh11ah2!1dc2a#uxu1c2~uxv1uvx!2

dc2
a

vxv ,

v t5
a

d
@d~h12m1!1h2a#uxxx1m1vxxx2

a

d3h2
@12h2~dh11ah2!1d2c2m1#uxu ~21!

1

c2m1

h2
~uxv1vxu !2

d

h2a
c2vxv ,

where, in both cases u2 , u3 , u4 , v4 , u6 are arbitrary functions. If we substitute c25a1 , c3
52a0 , h251, m15h150, d5(a0a26)/a1 , a56/(a06ia1) the first subclass reduces to the
system given in Ref. 12,

u t5vxxx1~a0u1a1v !ux1~a1u2a0v !vx ,
~22!

v t5uxxx1~a0u1a1v !vx1~a0v2a1u !ux .

Case (5): r153, r253, r353. In this case test fails, since the number of resonances at r
53 is higher than the number of arbitrary functions, which are u3 and v3 .

In order to discuss the degenerate systems, let us assume that m25m150; then from ~8! we
have the relation v05lu0 .

We know that the roots of ~8! must be integers and three of the roots are 21, 4, 6. Let the
fourth root be s. When sÞ0, we can choose u05gfx

2. Substituting u0 and v0 into Eqs. ~5! and
~6!, we have

d152~d21d41d3l !l ,
~23!

h152@12h2l1c1g1~c21c4!gl1c3gl2#/12.

Together with these equations, the fourth root of ~8! is

s52~d21d412d3l !/~d21d3l !, ~24!

which can be solved for l,

l5@~22s !d212d4#/~s24 !d3 , ~25!

where d3Þ0, sÞ4. In this work we discuss the cases when s51,2,3,4,5,6 and obtained the
following.

Case (d1): r51, 21,4,6.

u t52c1guxxx112h2vxxx112~c1u1c4v !ux112~c2u1c3v !vx ,
~26!

v t5d4uxv2~2 d4u2d3v !vx ,

where h252g(c212c4)/36, c15(c212c4)d4 /(c22c4), c35(c212c423d3)(c22c4)/9d4 ,
d2522d4 , and v1 , u4 , u6 are arbitrary.

Case (d2): r52, 21,4,6.

u t52

c1g

12
uxxx1h2vxxx1~c1u1c4v !ux1~c2u1c3v !vx ,

~27!

v t5~d2u1d3v !vx ,
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where d450 and u2 , u4 , u6 are the arbitrary functions.
Case (d3): r53, 21,4,6.

u t52

c1g

12
uxxx1h2vxxx1~c1u1c4v !ux1~c2u1c3v !vx ,

~28!

v t5d4ux v1~2 d4u1d3v !vx ,

where d252d4 , 12h2c11g@c1(2c22c4)23d4(c222c4)#50, d4@212h2(c222c4)1g(c1c3
2c2d312c4d3)#50, and v3 , u4 , u6 are arbitrary.

Case (d4): r54, 21,4,6,d45d2 .

u t5h1uxxx1h2vxxx1c1uxu1c2~uxv1vxu !1c3vxv ,
~29!

v t5d1ux u1d2~uxv1vxu !1d3vx v ,

where
c45c2 , d152(2d21d3l)l , h152@12h2l1c1g12c2gl1c3gl2#/12, and g

512h2$d2(d22c1)1d2l(2d323c2)2l2@d3(c22d3)12c3d2#2c3d3l
3%/$c1c2d2

12d2l(c1c31c2
2)1c3l

2(c1d315c2d2)12c3l
3(c2d31c3d2)1c3

2d3l
4%, u4 , v4 , u6 are arbi-

trary.
As a special case, if l50, c25d350, d25c352, c156, h250, g522, the set of equations

~30! reduces to the one given by Ito,3

u t5uxxx16uxu12vxv ,
~30!

v t52~uv !x .

Case (d5): r55, 21,4,6. In this case we have two subclasses passing the P test: The first one
is

u t52

c1g

12
uxxx1h2vxxx1~c1u1c4v !ux1~c2u1c3v !vx ,

~31!

v t5d4ux v1~d2u1d3v !vx ,

where d453d2/2, l50, and the second one is

u t5
1

12d3
2 @~12h21c4g !~3d222d4!d32~3d222d4!

2c3g23d3
2g~d22d4!#uxxx1h2vxxx

1

1

d3
$@~3d222d4!c213d3~d22d4!#u1c4d3v%ux1~c2u1c3v !vx , ~32!

v t52

1

d3
@~3d222d4!~2d223d4!u2d4d3v#ux1~d2u1d3v !vx ,

where, in both cases, u4 , u5 , u6 are arbitrary.
Case (d6): r56, 21,4,6.

u t52

g

12d3
@c1d31~c222c4!~2d22d4!#uxxx1

g

12d3
@~c422c2!d31~2d22d4!c3#vxxx

1~c1u1c4v !ux1~c2u1c3v !vx , ~33!
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v t52

1

d3
@~2d22d4!~d222d4!u2d4 d3v#ux1~d2u1d3v !vx ,

where v4 , u6 , v6 are arbitrary.

III. SUMMARY

We found new coupled system of equations having the Painlevé property. Some of them
reduce to the known equations by special choice of parameters. Some of these systems may be
related by simple transformations. Furthermore, the problem studied in this work may be consid-
ered in the framework of the perturbative Painlevé approach given in Ref. 15. In most cases the
recursion relations and the expressions for u j and v j are very extensive, and therefore are not
given in this work.
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