Jordan KdV Systems and Painlevé Property

Ayşe (Kalkanli) Karasu ${ }^{1}$

Received August 18, 1996

The Painlevé property of Jordan KdV systems in two dimensions is studied. It is shown that a subclass of these equations on a nonassociative algebra possesses the Painlevé property.

1. INTRODUCTION

Svinolupov (1991) introduced many-field Korteweg-de Vries (KdV) equations

$$
\begin{equation*}
u_{t}^{i}=u_{x x x}^{i}+a_{j k}^{i} u^{j} u_{x}^{k}, \quad i=1, \ldots, N \tag{1.1}
\end{equation*}
$$

where u^{i} depend on variables x and t, and $a_{j k}^{i}$ is a set of constants symmetric with respect to the subscripts. He showed that there is a one-to-one correspondence between such equations and Jordan algebras. Specifically, Jordan KdV systems have an infinite algebra of generalized symmetries, an infinite series of local conservation laws, and a recursion operator. The systems corresponding to simple Jordan algebras are called irreducible. In two dimensions all the systems related to two-dimensional Jordan algebras contain a scalar KdV equation and a linear equation which are not really coupled (Svinolupov, 1991, 1994).

In this work we consider the system (1.1) for $N=2$. We apply the Painlevé test for partial differential equations introduced by Weiss et al. (1983) to the system of coupled KdV equations without a priori assumptions about the algebraic nature of the system. We find the sets of constants $a_{j k}^{i}$ for which the system (1.1) possesses the Painlevé property. A subclass of these equations on a nonassociative algebra has the Painlevé property. By

[^0]using the truncated expansions of the solutions we also obtain the autoBäcklund transformations for these equations.

2. SYMMETRY APPROACH

The recursion operator for the scalar Korteweg-de Vries equation (N $=1$) is given in Olver (1993) as

$$
\begin{equation*}
L=D^{2}+\frac{2}{3} u+\frac{1}{3} u_{x} D^{-1} \tag{2.1}
\end{equation*}
$$

where $D \equiv d / d x$. An analogous operator also exists for Jordan systems. In Svinolupov (1991) it is stated as a theorem that any Jordan system (1.1) is integrable and possesses a formal recursion operator:

$$
\begin{align*}
L= & D^{2}+\frac{2}{3} a(i) u^{i}+\frac{1}{3} u_{x}^{i} D^{-1} a(i) \\
& +\frac{1}{9} u^{j} D^{-1} u^{k} D^{-1}\left[a_{j k}^{n} a(n)-a(k) a(j)\right] \tag{2.2}
\end{align*}
$$

where the matrices $a(j)$ are determined by the formula $(a(j))_{k}^{i}=a_{j k}^{i}$ and the constants $a_{j k}^{i}$ are the structure constants of a Jordan algebra satisfying the identities

$$
\begin{align*}
& a_{j k}^{n}\left(a_{n r}^{i} a_{m s}^{r}-a_{m r}^{i} a_{n s}^{r}\right)+a_{k m}^{n}\left(a_{n r}^{i} a_{j s}^{r}-a_{j r}^{i} a_{n s}^{r}\right) \\
& \quad+a_{m j}^{n}\left(a_{n r}^{i} a_{k s}^{r}-a_{k r}^{i} a_{n s}^{r}\right)=0 \tag{2.3}
\end{align*}
$$

We consider a system of two nonlinear equations of the form

$$
\begin{align*}
& u_{t}=u_{x x x}+c_{1} u u_{x}+c_{2}\left(u v_{x}+v u_{x}\right)+c_{3} v v_{x} \\
& v_{t}=v_{x x x}+d_{1} u u_{x}+d_{2}\left(u v_{x}+v u_{x}\right)+d_{3} v v_{x} \tag{2.4}
\end{align*}
$$

where

$$
\begin{array}{lll}
c_{1}=a_{11}^{1}, & d_{1}=a_{11}^{2}, & u=u^{1} \\
c_{2}=a_{21}^{1}=a_{12}^{1}, & d_{2}=a_{12}^{2}=a_{21}^{2}, & v=u^{2} \tag{2.5}\\
c_{3}=a_{22}^{1}, & d_{3}=a_{22}^{2}, &
\end{array}
$$

The recursion operator (2.2) for this problem can be expressed as a 2×2 matrix whose components are

$$
\begin{align*}
(L)_{11}= & D^{2}+\frac{2}{3}\left(c_{1} u+c_{2} v\right)+\frac{1}{3}\left(u_{x} D^{-1} c_{1}+v_{x} D^{-1} c_{2}\right) \\
& -\frac{1}{9}\left(u D^{-1}\right)\left(v D^{-1}\right) F_{1}-\frac{1}{9}\left(v D^{-1}\right)^{2} F_{2} \tag{2.6}\\
(L)_{12}= & \frac{2}{3}\left(c_{2} u+c_{3} v\right)+\frac{1}{3}\left(u_{x} D^{-1} c_{2}+v_{x} D^{-1} c_{3}\right) \\
& +\frac{1}{9}\left(u D^{-1}\right)^{2} F_{1}+\frac{1}{9}\left(v D^{-1}\right)\left(u D^{-1}\right) F_{2} \tag{2.7}
\end{align*}
$$

$$
\begin{align*}
(L)_{21}= & \frac{2}{3}\left(d_{1} u+d_{2} v\right)+\frac{1}{3}\left(u_{x} D^{-1} d_{1}+v_{x} D^{-1} d_{2}\right) \\
& -\frac{1}{9}\left(u D^{-1}\right)\left(v D^{-1}\right) F_{3}+\frac{1}{9}\left(v D^{-1}\right)^{2} F_{1} \tag{2.8}\\
(L)_{22}= & D^{2}+\frac{2}{3}\left(d_{2} u+d_{3} v\right)+\frac{1}{3}\left(u_{x} D^{-1} d_{2}+v_{x} D^{-1} d_{3}\right) \\
& +\frac{1}{9}\left(u D^{-1}\right)^{2} F_{3}-\frac{1}{9}\left(v D^{-1}\right)\left(u D^{-1}\right) F_{1} \tag{2.9}
\end{align*}
$$

where

$$
\begin{gather*}
F_{1}=c_{3} d_{1}-c_{2} d_{2}, \quad F_{2}=c_{2}^{2}-c_{1} c_{3}+c_{3} d_{2}-c_{2} d_{3} \tag{2.10}\\
F_{3}=d_{1} d_{3}-d_{2}^{2}+c_{1} d_{2}-c_{2} d_{1}
\end{gather*}
$$

and the structure constants c_{i} and d_{i} satisfy the following identities:

$$
\begin{array}{rrr}
\left(c_{1}-2 d_{2}\right) F_{1}=0, & \left(c_{1}-2 d_{2}\right) F_{2}=0, & \left(c_{1}-2 d_{2}\right) F_{3}=0 \\
\left(d_{3}-2 c_{2}\right) F_{1}=0, & \left(d_{3}-2 c_{2}\right) F_{2}=0, & \left(d_{3}-2 c_{2}\right) F_{3}=0 \tag{2.11}\\
d_{1} F_{1}=0, & d_{1} F_{2}=0, & d_{1} F_{3}=0 \\
c_{3} F_{1}=0, & c_{3} F_{2}=0, & c_{3} F_{3}=0
\end{array}
$$

If F_{1}, F_{2}, F_{3} vanish, the recursion operator reduces to a form similar to (2.1). This case corresponds to an associative algebra in which the system (2.4) decouples.

3. PAINLEVÉ ANALYSIS

A partial differential equation has the Painlevé property when its solutions are single-valued about the movable singularity manifold. If the singularity manifold is determined by

$$
\begin{equation*}
\phi\left(x^{0}, x^{1}, \ldots, x^{n}\right)=0 \tag{3.1}
\end{equation*}
$$

and $u^{a}(a=1, \ldots, N)$ satisfy a system of partial differential equations (N equations), then the Painlevé expansion is given by

$$
\begin{equation*}
u^{a}=\phi^{\alpha_{a}} \sum_{k=0}^{\infty} u_{k}^{a}\left(x^{0}, x^{1}, \ldots, x^{n}\right) \phi^{k} \tag{3.2}
\end{equation*}
$$

where u_{k}^{a} are analytic functions of $\left(x^{0}, x^{1}, \ldots, x^{n}\right)$ in a neighborhood of the manifold (3.1). The substitution of (3.2) into the partial differential equations under consideration determines the possible values of α_{a} and gives the recursion relations for u_{k}^{a}. A set of partial differential equations is said to have the Painlevé property in the sense of Weiss et al. provided α_{a} are integers, the recursion relation are consistent, and the series expansion (3.2)
contains the correct number of arbitrary functions. Applying the Painlevé analysis to equations (2.4), we obtain the following:
(i) Leading order analysis. Substituting $u=u_{0} \phi^{\alpha_{1}}$ and $v=v_{0} \phi^{\alpha_{2}}$ into the leading terms of (2.4), we have $\alpha_{1}=\alpha_{2}=-2$ and the equations for u_{0} and v_{0},

$$
\begin{align*}
& c_{1} u_{0}^{2}+2 c_{2} u_{0} v_{0}+c_{3} v_{0}^{2}+12 u_{0} \phi_{x}^{2}=0 \tag{3.3}\\
& d_{1} u_{0}^{2}+2 d_{2} u_{0} v_{0}+d_{3} v_{0}^{2}+12 v_{0} \phi_{x}^{2}=0 \tag{3.4}
\end{align*}
$$

(ii) Resonances. Substituting

$$
\begin{equation*}
u=u_{0} \phi^{-2}+\beta^{1} \phi^{r-2}, \quad v=v_{0} \phi^{-2}+\beta^{2} \phi^{r-2} \tag{3.5}
\end{equation*}
$$

into the leading terms of equations (2.4) and requiring that β^{1} and β^{2} be arbitrary, we have

$$
\begin{align*}
& \left\{\phi_{x}^{4}(r-2)^{2}(r-3)^{2}+\phi_{x}^{2}(r-2)(r-3)\left[u_{0}\left(d_{2}+c_{1}\right)+v_{0}\left(d_{3}+c_{2}\right)\right]\right. \\
& \left.\quad+\left[\left(u_{0} c_{1}+v_{0} c_{2}\right)\left(u_{0} d_{2}+v_{0} d_{3}\right)-\left(u_{0} c_{2}+v_{0} c_{3}\right)\left(u_{0} d_{1}+v_{0} d_{2}\right)\right]\right\} \\
& \quad \times(r-4)^{2}=0 \tag{3.6}
\end{align*}
$$

The roots of this equation determine the resonances. $r=4$ is a double root which satisfies the equation identically. We must always have the root $r=$ -1 , since it represents the arbitrariness of the singularity manifold $\phi(x, t)$ $=0$. This is possible if

$$
\begin{align*}
& 144 \phi_{x}^{4}+12 \phi_{x}^{2}\left[u_{0} c_{1}+v_{0}\left(d_{3}+2 c_{2}\right)\right] \\
& \quad+v_{0}\left[u_{0}\left(d_{3} c_{1}-d_{1} c_{3}\right)+2 v_{0}\left(d_{3} c_{2}-d_{2} c_{3}\right)\right]=0 \tag{3.7}
\end{align*}
$$

If this equation is satisfied, we have another root, $r=6$. Using equations (3.3), (3.4), and (3.7), we find that equation (3.6) becomes

$$
\begin{align*}
& 12 \phi_{x}^{4}\left(r^{2}-5 r+6\right)+12 \phi_{x}^{2}\left(u_{0} d_{2}-v_{0} c_{2}\right) \\
& \quad+v_{0}\left[u_{0}\left(d_{1} c_{3}-d_{3} c_{1}\right)+2 v_{0}\left(d_{2} c_{3}-d_{3} c_{2}\right)\right]=0 \tag{3.8}
\end{align*}
$$

The roots of this equation are

$$
\begin{equation*}
r_{1}=\frac{15 \phi_{x}^{2}-\sqrt{ }}{6 \phi_{x}^{2}}, \quad r_{2}=\frac{15 \phi_{x}^{2}+\sqrt{ }}{6 \phi_{x}^{2}} \tag{3.9}
\end{equation*}
$$

r_{1} and r_{2} must be integers, say n_{1} and n_{2}; then we have the following values of resonances:

$$
\begin{equation*}
r=-1,4,4,6, n_{1}, n_{2} \quad \text { where } \quad n_{1}+n_{2}=5 \tag{3.10}
\end{equation*}
$$

Now let us examine the different cases for n_{1}, n_{2}.

Case 1. Let $n_{1}=0, n_{2}=5$; then from equation (3.8) we have

$$
\begin{gather*}
72 \phi_{x}^{4}+12 \phi_{x}^{2}\left(u_{0} d_{2}-v_{0} c_{2}\right)+v_{0}\left[u_{0}\left(d_{1} c_{3}-d_{3} c_{1}\right)+2 v_{0}\left(d_{2} c_{3}\right.\right. \tag{3.11}\\
\left.\left.-d_{3} c_{2}\right)\right]=0
\end{gather*}
$$

Equations (3.3), (3.4), (3.7), and (3.11) must be solved for u_{0} and v_{0}. Since one of the roots is zero, the function u_{0} or v_{0} must be arbitrary. If u_{0} is arbitrary, the equations under consideration imply $v_{0}=\alpha \phi_{x}^{2}+\beta$, where α and β are constants. Requiring that the equations for u_{0} and v_{0} be satisfied, we have the following solution:

$$
\begin{gather*}
\alpha=-12 / d_{3}, \quad \beta=-u_{0} d_{2} / c_{2} \\
d_{1}=0, \quad d_{2}=c_{1} / 2, \quad d_{3}=2 c_{2}, \quad c_{3}=0 \\
u_{0} \text { is arbitrary, } \quad v_{0}=\frac{1}{2 c_{2}}\left(-12 \phi_{x}^{2}-u_{0} c_{1}\right) \tag{3.12}
\end{gather*}
$$

(iiia) Arbitrary functions. To discuss the arbitrariness of the functions corresponding to resonance values $-1,0,4,4,5,6$, we have to substitute

$$
u=\sum_{j=0}^{6} u_{j} \phi^{j-2}, \quad v=\sum_{j=0}^{6} v_{j} \phi^{j-2}
$$

into equations (2.4) and obtain the recursion relations for u_{j} and v_{j}. Solving these relations, we have

$$
\begin{align*}
& j=0 \tag{3.13}\\
& j=1 \\
& u_{0}= \operatorname{arbitrary} ; \quad v_{0}=-\left(12 \phi_{x}^{2}+c_{1} u_{0}\right) / 2 c_{2} \tag{3.14}\\
& v_{1}= {\left[\phi_{x x}\left(12 \phi_{x}^{2}-u_{0} c_{1}\right)+\phi_{x} u_{0 x} c_{1}\right] / 2 \phi_{x}^{2} c_{2} } \\
& u_{1}=\left(\phi_{x x} u_{0}-\phi_{x} u_{0 x}\right) / \phi_{x}^{2} \\
& v_{2}= {\left[8 \phi_{x x x} \phi_{x}\left(-6 \phi_{x}^{2}+u_{0} c_{1}\right)+\phi_{x x}^{2}\left(36 \phi_{x}^{2}-21 u_{0} c_{1}\right)\right.} \\
&\left.+18 \phi_{x x} \phi_{x} u_{0 x} c_{1}+6 \phi_{x}^{2}\left(2 \phi_{x} \phi_{t}-u_{0 x x} c_{1}\right)+\phi_{x} \phi_{t} u_{0} c_{1}\right] / 24 \phi_{x}^{4} c_{2} \tag{3.15}\\
& j=3 \\
& u_{2}= {\left[-8 \phi_{x x x} \phi_{x} u_{0}+\phi_{x x}\left(21 \phi_{x x} u_{0}-18 \phi_{x} u_{0 x}\right)\right.} \\
&\left.+\phi_{x}\left(6 \phi_{x} u_{0 x x}-\phi_{t} u_{0}\right)\right] / 12 \phi_{x}^{4} \\
& v_{3}= {\left[3 \phi_{x 1} \phi_{x}^{2}\left(-4 \phi_{x}^{2}+u_{0} c_{1}\right)+3 \phi_{x x x} \phi_{x}^{2}\left(4 \phi_{x}^{2}-u_{0} c_{1}\right)\right.} \\
&+4 \phi_{x x x} \phi_{x x} \phi_{x}\left(-12 \phi_{x}^{2}+7 u_{0} c_{1}\right)-10 \phi_{x x x} \phi_{x}^{2} u_{0 x} c_{1} \\
&+\phi_{x x}\left(36 \phi_{x x}^{2} \phi_{x}^{2}-39 \phi_{x x}^{2} u_{0} c_{1}+33 \phi_{x x} \phi_{x} u_{0 x} c_{1}\right. \\
&\left.+12 \phi_{x}^{3} \phi_{t}-12 \phi_{x}^{2} u_{0 x x} c_{1}-\phi_{x} \phi_{t} u_{0} c_{1}\right) \\
&\left.+\phi_{x}^{2}\left(2 \phi_{x} u_{0 x x} c_{1}-2 \phi_{x} u_{0 t} c_{1}+\phi_{t} u_{0 x} c_{1}\right)\right] / 24 \phi_{x}^{6} c_{2}
\end{align*}
$$

$$
\begin{align*}
u_{3}= & {\left[-3 \phi_{x t} \phi_{x}^{2} u_{0}+3 \phi_{x x x x} \phi_{x}^{2} u_{0}+\phi_{x x x} \phi_{x}\left(-28 \phi_{x x} u_{0}+10 \phi_{x} u_{0 x}\right)\right.} \\
& +\phi_{x x}\left(39 \phi_{x x}^{2} u_{0}-33 \phi_{x x} \phi_{x} u_{0 x}+12 \phi_{x}^{2} u_{0 x x}+\phi_{x} \phi_{t} u_{0}\right) \\
& \left.+\phi_{x}^{2}\left(-2 \phi_{x} u_{0 x x x}+2 \phi_{x} u_{0 t}-\phi_{t} u_{0 x}\right)\right] / 12 \phi_{x}^{6} \tag{3.16}
\end{align*}
$$

$j=4 \quad$ the compatibility conditions are satisfied identically, which means u_{4} and v_{4} are arbitrary functions
$j=5 \quad v_{5}=$ arbitrary

$$
\begin{align*}
u_{5}= & {\left[-v_{5} \phi_{x}\left(12 \phi_{x}^{2}+u_{0} c_{1} \phi_{x}+4 v_{0} c_{2}\right)-v_{4 x}\left(12 \phi_{x}^{2}+u_{0} c_{1}+4 v_{0} c_{2}\right)\right.} \\
& -v_{4}\left(12 \phi_{x x} \phi_{x}+u_{1} c_{1} \phi_{x}+4 v_{1} c_{2} \phi_{x}+u_{0 x} c_{1}+4 v_{0 x} c_{2}\right) \\
& -v_{0} c_{1} u_{4 x}-u_{4}\left(\phi_{x} v_{1} c_{1}+v_{0 x} c_{1}\right)-6 \phi_{x} v_{3 x x x} \\
& -v_{3 x}\left(6 \phi_{x x x}+u_{1} c_{1}+4 v_{1} c_{2}\right)-v_{3}\left(2 \phi_{x x x}+2 \phi_{x} v_{2} c_{2}\right. \\
& \left.+\phi_{x} u_{2} c_{1}-2 \phi_{t}+u_{1 x} c_{1}+4 v_{1 x} c_{2}\right)-u_{3 x} v_{1} c_{1} \\
& -u_{3}\left(\phi_{x} v_{2} c_{1}+v_{1 x} c_{1}\right) \\
& \left.-2 v_{2 x x x}-v_{2 x}\left(u_{2} c_{1}+4 v_{2} c_{2}\right)+2 v_{2 x}-v_{2} c_{1} u_{2 x}\right] / \phi_{x} v_{0} c_{1} \tag{3.17}
\end{align*}
$$

$$
j=6 \quad \begin{align*}
u_{6}= & \operatorname{arbitrary}, \\
v_{6}= & {\left[-2 \phi_{x} v_{0} c_{1} u_{6}-v_{5 x}\left(u_{0} c_{1}+4 v_{0} c_{2}+36 \phi_{x}^{2}\right)\right.} \\
& -v_{5}\left(36 \phi_{x x} \phi_{x}+2 \phi_{x} u_{1} c_{1}+8 \phi_{x} v_{1} c_{2}+u_{0 x} c_{1}+4 v_{0 x} c_{2}\right) \\
& -u_{5 x} v_{0} c_{1}-u_{5}\left(2 \phi_{x} v_{1} c_{1}+v_{0 x} c_{1}\right)-12 \phi_{x} v_{4 x x} \\
& -v_{4 x}\left(12 \phi_{x x}+u_{1} c_{1}+4 v_{1} c_{2}\right) \\
& -v_{4}\left(4 \phi_{x x x}+2 \phi_{x} u_{2} c_{1}+8 \phi_{x} v_{2} c_{2}-4 \phi_{t}+u_{1 x} c_{1}+4 v_{1 x} c_{2}\right) \\
& -u_{4 x} v_{1} c_{1}-u_{4}\left(v_{1 x} c_{1}+2 \phi_{x} v_{2} c_{1}\right)-2 v_{3 x x x} \\
& -v_{3 x}\left(u_{2} c_{1}+4 v_{2} c_{2}\right)+2 v_{3 t}-u_{3 x} v_{2} c_{1}-u_{2 x} v_{3} c_{1} \\
& -v_{2 x}\left(u_{3} c_{1}+4 v_{3} c_{2}\right)-2 \phi_{x} v_{3}\left(u_{3} c_{1}\right. \\
& \left.\left.+2 v_{3} c_{2}\right)\right] /\left[2 \phi_{x}\left(24 \phi_{x}^{2}+u_{0} c_{1}+4 v_{0} c_{2}\right)\right] \tag{3.18}
\end{align*}
$$

Since $\phi, u_{0}, u_{4}, v_{4}, v_{5}, u_{6}$ are arbitrary functions corresponding to the resonances $(-1,0,4,4,5,6)$, the system of equations (2.4) with $c_{3}=d_{1}=0$, $d_{3}=2 c_{2}, d_{2}=c_{1} / 2$ passes the Painlevé test. It is easy to check that the Jordan algebra is nonassociative with these values of c_{i} and d_{i}. In Weiss $(1983,1986)$ it was shown that the Bäcklund transformations can be obtained
by truncating the expansions (3.2) at constant level terms, that is, $u_{j}=0$ if $j \geq 3, v_{j}=0$ if $j \geq 3$. This is possible if

$$
\begin{align*}
& u_{2 t}=u_{2 x x x}+c_{1} u_{2} u_{2 x}+c_{2}\left(u_{2} v_{2 x}+v_{2} u_{2 x}\right) \\
& v_{2 t}=v_{2 x x x}+\frac{c_{1}}{2}\left(u_{2} v_{2 x}+v_{2} u_{2 x}\right)+2 c_{2} v_{2} v_{2 x} \tag{3.19}
\end{align*}
$$

Equations (3.13)-(3.15) and (3.19) will be consistent if

$$
\begin{equation*}
\phi_{t}=\phi_{x x x}-\frac{3}{2} \frac{\phi_{x x}^{2}}{\phi_{x}}+\lambda \phi_{x}, \quad \lambda=\text { const } \tag{3.20}
\end{equation*}
$$

which can be formulated in terms of the Schwarzian derivative

$$
\begin{equation*}
\frac{\phi_{t}}{\phi_{x}}-\{\phi ; x\}=\lambda \tag{3.21}
\end{equation*}
$$

and the function u_{0} must be a solution of the linear equation

$$
\begin{align*}
& 2 \phi_{x}^{3} u_{0 t}-2 \phi_{x}^{3} u_{0 x x x}+12 \phi_{x x} \phi_{x}^{2} u_{0 x x} \\
& \quad-\phi_{x}\left(18 \phi_{x x}^{2}+10 \lambda \phi_{x}^{2}-9 \phi_{x} \phi_{t}\right) u_{0 x} \\
& \quad+2 \phi_{x x}\left(3 \phi_{x x}^{2}+8 \lambda \phi_{x}^{2}-9 \phi_{x} \phi_{t}\right) u_{0}=0 \tag{3.22}
\end{align*}
$$

Then,

$$
\begin{align*}
& u=u_{2}-\frac{1}{\phi}\left(\frac{u_{0}}{\phi_{x}}\right)_{x}+\frac{u_{0}}{\phi} \\
& v=v_{2}+\frac{6}{c_{2}}(\ln \phi)_{x x}+\frac{c_{1}}{2 c_{2} \phi}\left[\left(\frac{u_{0}}{\phi_{x}}\right)_{x}-\frac{u_{0}}{\phi}\right] \tag{3.23}
\end{align*}
$$

will define the Bäcklund transformations for the Jordan KdV system, which generate nontrivial solutions from trivial ones. Note that a particular solution of (3.22) is $u_{0}=C \phi_{x}^{2}$, where C is a constant.

Case 2. If $n_{1}=1, n_{2}=4$, the test fails, since the number of arbitrary functions is less than the number of resonances $(-1,4,4,6,1,4)$.

Case 3. Let $n_{1}=2, n_{2}=3$; then from equation (3.8) we have $12 \phi_{x}^{2}\left(u_{0} d_{2}-v_{0} c_{2}\right)+v_{0}\left[u_{0}\left(d_{1} c_{3}-d_{3} c_{1}\right)+2 v_{0}\left(d_{2} c_{3}-d_{3} c_{2}\right)\right]=0$

To solve equations (3.3), (3.4), (3.7), and (3.24) for u_{0} and v_{0}, let

$$
v_{0}=\alpha \phi_{x}^{2}+\beta \quad \text { and } \quad u_{0}=\delta \phi_{x}^{2}+\gamma
$$

where $\alpha, \beta, \gamma, \delta$ are constants. Substituting these into equations (3.3), (3.4), (3.7), and (3.24), we have

$$
\begin{align*}
& \beta=0, \quad \gamma=0, \quad \delta \neq 0 \\
& d_{1}=-\frac{1}{\delta^{2}}\left(2 d_{2} \delta \alpha+d_{3} \alpha^{2}+12 \alpha\right) \\
& d_{2}=-\frac{1}{\delta^{2}}\left(d_{3} \delta \alpha-c_{2} \delta \alpha-c_{3} \alpha^{2}\right) \\
& c_{1}=-\frac{1}{\delta^{2}}\left(2 c_{2} \delta \alpha+c_{3} \alpha^{2}+12 \delta\right) \\
& u_{0}=\delta \phi_{x}^{2}, \quad v_{0}=\alpha \phi_{x}^{2} \tag{3.25}
\end{align*}
$$

(iiib) Arbitrary functions. Substituting

$$
u=\sum_{j=0}^{6} u_{j} \phi^{j-2}, \quad v=\sum_{j=0}^{6} v_{j} \phi^{j-2}
$$

into equations (2.4), we observe that these equations pass the Painlevé test if

$$
\begin{equation*}
d_{3}=\frac{1}{\delta\left(c_{2} \delta+c_{3} \alpha\right)}\left(c_{2}^{2} \delta^{2}+3 c_{2} c_{3} \delta \alpha+2 c_{3}^{2} \alpha^{2}+12 c_{3} \delta\right) \tag{3.26}
\end{equation*}
$$

where

$$
\begin{align*}
u_{0}= & \delta \phi_{x}^{2}, \quad v_{0}=\alpha \phi_{x}^{2} \\
u_{1}= & -\delta \phi_{x x}, \quad v_{1}=-\alpha \phi_{x x} \\
v_{2}= & \left\{u_{2}\left[\phi_{x}^{2}\left(c_{2} \delta \alpha+c_{3} \alpha^{2}+12 \delta\right)\right]\right. \\
& \left.+\delta^{2}\left[\phi_{x}\left(-4 \phi_{x x x}+\phi_{t}\right)+3 \phi_{x x}^{2}\right]\right\} /\left[\phi_{x}^{2} \delta\left(c_{2} \delta+c_{3} \alpha\right)\right] \\
v_{3}= & \left\{u_{3}\left[\phi_{x}^{4}\left(c_{2} \delta \alpha+c_{3} \alpha^{2}+12 \delta\right)\right]+\delta^{2}\left[\phi_{x}^{2}\left(-2 \phi_{x t}+\phi_{x x x}\right)\right.\right. \\
& \left.\left.+\phi_{x} \phi_{x x}\left(-4 \phi_{x x x}+\phi_{t}\right)+3 \phi_{x x}^{3}\right]\right] / \phi_{x}^{4} \delta\left(c_{2} \delta+c_{3} \alpha\right) \tag{3.27}
\end{align*}
$$

The expressions for u_{5}, v_{5}, and v_{6} are very extensive, therefore are not presented here. The functions $u_{2}, u_{3}, u_{4}, v_{4}$ are arbitrary, and u_{6} is also arbitrary if (3.26) is valid. But in this case F_{1}, F_{2}, F_{3} in (2.11) vanish, where d_{1}, d_{2}, c_{1} are given in (3.25), which implies that we have an associative algebra. Thus, in this case the system of equations (2.4) decouples.

4. CONCLUSION

We conclude that the system of equations

$$
\begin{aligned}
& u_{t}=u_{x x x}+c_{1} u u_{x}+c_{2}\left(u v_{x}+v u_{x}\right) \\
& v_{t}=v_{x x x}+\frac{c_{1}}{2}\left(u v_{x}+v u_{x}\right)+2 c_{2} v v_{x}
\end{aligned}
$$

possesses the Painlevé property, has Bäcklund transformations, and corresponds to a nonassociative Jordan algebra. However, this system can be written as

$$
\begin{aligned}
& U_{t}=U_{x x x}+U U_{x} \\
& V_{t}=V_{x x x}+\frac{1}{2}(U V)_{x}
\end{aligned}
$$

where $U=c_{1} u+2 c_{2} v$ and $V=c_{1} u-2 c_{2} v$. For a given solution U of the KdV equations, V is obtained by solving the linear equation. This result is consistent with that given in Svinolupov (1994).

ACKNOWLEDGMENTS

The author would like to thank Prof. Metin Gürses for stimulating discussions and useful comments. The research reported in this paper was supported in part by the Scientific and Technical Research Council of Turkey.

REFERENCES

Olver, P. (1993). Applications of Lie Groups to Differential Equations, Springer-Verlag, Berlin. Svinolupov, S. I. (1991). Teoreticheskaya i Matematicheskaya Fizika, 87, 391.
Svinolupov, S. I. (1994). Functional Analysis and Its Applications, 27, 257.
Weiss, J. (1983). Journal of Mathematical Physics, 24, 1405.
Weiss, J. (1986). Journal of Mathematical Physics, 27, 1293.
Weiss, J., Tabor, M., and Carnevale, G. (1984). Journal of Mathematical Physics, 24, 522.

[^0]: 'Department of Physics, Middle East Technical University, 06531 Ankara, Turkey.

