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The Painlevé property of coupled, non-autonomous Korteweg-de Vries (KdV) type of
systems is studied. The conditions under which the systems pass the Painlevé test for
integrability are obtained. For some of the integrable cases, exact solutions are given.
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1. Introduction

For a better understanding of complicated physical phenomena scientists have expe-
rienced that it is necessary to introduce mathematical models whose time evolutions
might show some features very similar to those of the original phenomena. These
models are usually systems of nonlinear differential equations. These equations can
be solved by the use of approximation techniques. But the range of applicability
and usefulness of these solutions increase the interest on the exact solutions and
on the solution generating methods for nonlinear equations. Before attempting to
solve an equation one usually needs to know whether the equation is integrable or
not. The difficulty of obtaining solutions by use of inverse scattering transform
technique, makes this information valuable. One of the powerful tools to obtain
this information is the Painlevé test for integrability. There are strong evidences
that all integrable equations have Painlevé property, that is, all solutions are single
valued around movable singularities.1
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In this work, we consider the non-autonomous, coupled KdV type systems

ut = uxxx + a(t)uux,

vt = vxxx + b(t)(uv)x, (1)

where a(t) and b(t) are some arbitrary functions. We apply the Painlevé test for
integrability to system (1), following the Weiss-Kruskal algorithm of singularity
analysis 2,3 and obtain the conditions on the functions a(t) and b(t). We find the
subclasses of these equations that possess the Painlevé property. By using the
truncated expansions we obtain the exact solutions for some of these subclasses,
explicitly.

2. The Non-autonomous Coupled KdV type Systems

Following the approach of Weiss et al 2, we assume that the solutions of (1) can be
represented by the expansions,

u(x, t) =
∞∑

r=0

ur(x, t)φr+α,

v(x, t) =
∞∑

r=0

vr(x, t)φr+β , (2)

where α and β are integers, ur(x, t) and vr(x, t) are analytic functions in a neigh-
borhood of the singularity manifold φ(x, t). A hypersurface φ(x, t) = 0 is nonchar-
acteristic of the system (1) if φtφx 6= 0. We choose3 φ(x, t) = x + ψ(t), without
loss of generality, hence the coefficients (ur, vr) are independent of x. This is the
simplest choice for the test, but it cannot be used to obtain the particular solutions.
The substitution of u(x, t) =

∑n
r=0 ur(t)φr+α, v(x, t) =

∑n
r=0 vr(t)φr+β into (1)

determines the branches, i.e. the admissible dominant behavior of solutions, and
the corresponding positions r of the resonances where the arbitrary functions can
appear in the expansions (2). The leading order analysis gives that

α = −2, u0 = − 12
a(t)

, (β − 2)
[
β(β − 1)− 12

b(t)
a(t)

]
v0(t) = 0. (3)

The branches satisfying (3) are

β1 = 2, β2 = −m, β3 = m + 1 (4)

where m is a non-negative integer and

b(t) =
a(t)
12

(m2 + m). (5)
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For each branch, the corresponding positions r of resonances are

β1 = 2, r = 0,m− 1,−(m + 2),

β2 = −m, r = 0,m + 2, 2m + 1,

β3 = m + 1, r = 0, 1−m,−(2m + 1). (6)

For every branch there exists the common resonance r = 0. For β1 and β3, at least
one of the resonances always stands in a negative position. The second branch,
β2 = −m, has two positive resonances for every value of m. Hence, the sec-
ond branch is generic: the expansions (2) with (3) represent the general solutions
near singularity. Next, we find from (1) the recursion relations for the coefficients
ur(t) (r = 0, 1, 2, . . .) of the expansions (2). We see that the resonances occur at
r = −1, 4, 6. The resonance at r = −1 corresponds to the arbitrariness of φ(x, t).
For the other resonances (r = 4, 6) the recursion relations turn out to be consistent
if

att(t)a(t)− 3a2
t (t) = 0. (7)

On the other hand, the recursion relations for vr(t) are depend on m. For each
value of m, there exist different recursion relations with different resonances, but
r = 0 is common for all those cases. We check every case up to m = 15 and find
the following cases:

m = 0, r = −1, 0, 1, 2, 4, 6;

m = 2, r = −1, 0, 4, 4, 5, 6;

m = 3, r = −1, 0, 4, 5, 6, 7; (8)

for which, the compatibility conditions are automatically satisfied for each reso-
nances and the system (1) passes the Painlevé test if a(t) satisfies (7). We find that
equation (7) has the solution

a(t) = ±[−2c1t + 2c2]−1/2, (9)

where c1 and c2 are integration constants. It follows that the system (1) possesses
the Painlevé property if a(t) = k and a(t) = k√

t
, where k is any non-zero constant.

For m = 3, it is obvious from (5) that a(t) = b(t) in the system (1). The
case a(t) = b(t) = k√

t
corresponds to the perturbation system of the cylindrical

KdV (cKdV) equation.4 For the other case, a(t) = b(t) = k, the system (1) is the
perturbative KdV system and is studied in Ref. 5. In the following sections we
study two of the systems (1), corresponding to m = 2, in detail.

2.1. Jordan KdV Systems

We consider the system of equations

ut = uxxx + 2kuux,

vt = vxxx + k(uv)x, (10)
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which corresponds to m = 2 and passes the Painlevé test. Actually, this system
of equations is known as a Jordan KdV system and was studied in Refs. 6 and 7.
To gain more information on (10), we define the transformations by truncating the
series expansions (2) on constant level as follows:

u =
u0

φ2
+

u1

φ
+ u2, v =

v0

φ2
+

v1

φ
+ v2, (11)

where u2(x, t) and v2(x, t) satisfy equations (10) and can be choosen as u2(x, t) = 0
and v2(x, t) = 0. Inserting above expressions for u and v into system (10) and
setting the coefficients of each power of φ to zero, we have

u0 = −6
k

φ2
x, u1 =

6
k

φxx, (12)

φt − 4φxxx + 3
φ2

xx

φx
= 0, (13)

φxxxx − 2
φxxφxxx

φx
+

φ3
xx

φ2
x

= 0, (14)

v1 = −v0,x

φx
+

φxx

φ2
x

v0, (15)

v0,xx − 3
φxx

φx
v0,x − 2(

φxxx

φx
− 2

φ2
xx

φ2
x

)v0 = 0, (16)

v0,t − (2
φxxx

φx
− φ2

xx

φ2
x

)v0,x = 0. (17)

By introducing ψ(x, t), such that φx = ψ2, equations (13) and (14) can be written
as

ψt − 4ψxxx = 0, (18)(
ψxx

ψ

)

x

= 0. (19)

These equations have solutions of the form

ψ(x, t) = c1e
[β(t)+α(t)(x−1)] + c2e

−[β(t)+α(t)(x−1)], (20)

and
ψ(x, t) = c1x + c2 (21)

where β(t) =
∫

α(t)dt, c1 and c2 are constants.
As a special case, we can choose α(t) = α = constant and c1 = c2 = 1, so that

the solution (20) can be written as

ψ(x, t) = 2 cosh αθ, (22)
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where θ(x, t) = x + 4α2t. The corresponding solution for φ(x, t) is,

φ(x, t) =
1
α

sinh 2αθ + 2θ + 16α2t. (23)

Using this solution we see that equations (16) and (17) are satisfied if

v0,t − 4α2v0,x = 0. (24)

Then,
v0(x, t) = f(x + 4α2t) = f(θ), (25)

where f is an arbitrary function of its argument. Now, using (12), (15), (23) and
(25) in (11) we obtain the exact solutions of Jordan KdV system (10),

u(x, t) = −24
k

[(
1 + cosh 2αθ

1
α sinh 2αθ + 2θ + 16α2t

)2

− α sinh 2αθ
1
α sinh 2αθ + 2θ + 16α2t

]
,

v(x, t) =
f(θ)

( 1
α sinh 2αθ + 2θ + 16α2t)2

−

[
f ′(θ)

2(1+cosh 2αθ) − αf(θ) sinh 2αθ
(1+cosh 2αθ)2

]

( 1
α sinh 2αθ + 2θ + 16α2t)

. (26)

These functions can be plotted by using Mathematica.8 Some results are given in
Figures(1) and (2).

file=fig1.eps

Fig. 1. The surface graphics of the function u(x, t) when k = 6, α = 1, f(θ) = θ.

file=fig2.eps

Fig. 2. The surface graphics of the function v(x, t) when k = 6, α = 1, f(θ) = θ.

Next, we consider the solution in (21) and find the expression for φ(x, t) as

φ(x, t) = c2
1

(
x3

3
− 4t

)
+ c1c2x

2 + c2
2x (27)

that leads to the rational solutions

u(x, t) = −6
k

(
φ2

x

φ2
− φxx

φ

)2

,

v(x, t) = d1

(
φ2

x

φ2
− φxx

φ

)
+ d2

(
φ

3/2
x

φ2
− φxxφ

−1/2
x

2φ

)
(28)
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of Jordan KdV system (10) where d1 and d2 are arbitrary constants.

2.2. Non-autonomous Jordan KdV Systems

As a second example, we consider the system of equations

ut = uxxx +
2√
t
uux,

vt = vxxx +
1√
t
(uv)x, (29)

which corresponds to the case m = 2 in (8) and passes the Painlevé test. This
system of equations is known as non-autonomous Jordan KdV system and is given
in Ref. 9. Inserting the expansions

u =
u0

φ2
+

u1

φ
, v =

v0

φ2
+

v1

φ
, (30)

into (29) and setting the coefficients of each power of φ to zero, we obtain

u0 = −6
√

tφ2
x, u1 = 6

√
tφxx, (31)

φt − 4φxxx + 3
φ2

xx

φx
= 0, (32)

φxxxx − 2
φxxφxxx

φx
+

φ3
xx

φ2
x

+
φx

6t
= 0, (33)

v1 = −v0,x

φx
+

φxx

φ2
x

v0, (34)

v0,xx − 3
φxx

φx
v0,x − 2(

φxxx

φx
− 2

φ2
xx

φ2
x

)v0 = 0, (35)

v0,t − (2
φxxx

φx
− φ2

xx

φ2
x

)v0,x +
5
6t

v0 = 0. (36)

The equations (32) and (33) are compatible, i.e.(φxxxx)t = (φt)xxxx, and can be
solved by the substitution φx = ψ2, where

ψt − 4ψxxx = 0,

ψxx +
[ x

12t
+ α(t)

]
ψ = 0. (37)

However, the last equation can only be solved in terms of Airy functions.10 The
result is

ψ(x, t) = (1/t)1/3 [c1Ai(z) + c2Bi(z)] (38)

where

z(x, t) =
[(−1/t)1/3(x + 12c0)]

22/331/3
, α(t) =

c0

t
(39)
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and c0, c1, c2 are constants. The corresponding solution for φ(x, t) is

φ(x, t) = (1/t)2/3(12c0 + x)[c1Ai(z) + c2Bi(z)]2

+ 22/331/3(1/t)1/3[c1Ai′(z) + c2Bi′(z)]2. (40)

Then,

u = 6
√

t(ln φ)xx

v =
v0

φ2
− 1

φ

(
v0

φx

)

x

, (41)

are the exact solutions of the system of equations (29) if (35) and (36) are satisfied.
Note that, these equations are linear in v0 and a particular solution is v0 = C

√
tφ2

x

with C = constant. In this particular case, v is proportional to u, i.e. v = −(C/6)u.
This implies that the system of equations in (29) reduces to a cKdV equation after
the transformation u → √

t u.11−13 In Ref.13, a hierarchy of solutions for the cKdV
equation is derived in terms of Airy functions. These solutions can be obtained
from (41) together with (40).
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