
October 17, 2001 13:48 WSPC/139-IJMPA 00539

International Journal of Modern Physics A, Vol. 16, No. 26 (2001) 4261–4269
c© World Scientific Publishing Company

PROLONGATION ALGEBRA AND

BÄCKLUND TRANSFORMATIONS OF

DRINFELD SOKOLOV SYSTEM OF EQUATIONS
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We show that the Drinfeld–Sokolov system of equations has a nontrivial prolonga-
tion structure. The closure process for prolongation algebra gives rise to the sl(4, c)
algebra which is used to derive the scattering problem for the system of equations under
consideration. The nontrivial new Bäcklund transformations and some explicit solutions
are given.

PACS numbers: 02.30.Jr, 11.10.Lm

1. Introduction

The systems of nonlinear partial differential equations are encountered in funda-

mental particle physics, plasma and fluid dynamics, statistical mechanics, many

areas of solid state physics, protein dynamics, laser and fiber optics.1 These equa-

tions are usually solved by the use of approximation techniques, but the range

of applicability and usefulness of these solutions increase the interest on the

exact solutions and methods of testing for complete integrability. During the past

three decades the developments in mathematical physics show that the completely

integrable systems of nonlinear partial differential equations have very rich mathe-

matical structures such as the existence of Lax pair, bi-Hamiltonian structures,

recursion operators and applicability of inverse scattering methods. One of the

effective methods to test integrability is the prolongation structure technique of

Wahlquist and Estabrook.2 This geometrical method immediately proceeds with

an attempt to construct the linear spectral problem or another device, such as

Bäcklund transformations. If we are successful we have not only tested our system

of equations for complete integrability but also constructed a device with which to

integrate the system. Dodd and Fordy3,4 made the method more algorithmic and

put it in an algebraic, instead of differential geometric framework. The first step is

to start with a differential equation and derive a set of generators and relations for

4261



October 17, 2001 13:48 WSPC/139-IJMPA 00539

4262 A. Karasu (Kalkanlı) & I. Yurduşen

an incomplete Lie algebra. The second step is to complete this Lie algebra and find

a finite matrix representation for the derived set of generators. Then, one expects

that Bäcklund transformations, which are relations among solutions of the non-

linear differential equations under consideration, may be obtained. For a review the

reader is referred to an article by Harrison5 and references quoted therein.

The integrable systems appear not one at a time, but in big families which are

called hierarchies. First, the Korteweg–de Vries (KdV) hierarchy was invented and

then infinitely many generalized KdV hierarchies were found. They were unified

to a single one large Kadomtsev–Petviashvili (KP) hierarchy.6 Very recently, it is

shown by Gürses and Karasu7 that the system of equations

ut = −uxxx + 6uux + 6vx ,

vt = 2vxxx − 6uvx
(1.1)

admits a recursion operator and a bi-Hamiltonian structure, therefore it has con-

stants of motion. The system (1.1) belongs to a type of equations which are called

“quasi-polynomial flows.” The Lax pair for this system was first given by Drinfeld

and Sokolov8 and later by Bogoyavlenskii.9 Under the scale transformations, this

system of equations reduces to a special case of the KP hierarchy which was given

by Satsuma and Hirota.10 They also gave the one-soliton solutions. Recently, auto-

Bäcklund transformations and certain analytical solutions are obtained by Tian

and Gao11 via the Painléve analysis. In this work, we used the prolongation method

to derive the linear scattering problem for the system (1.1). We obtain Bäcklund

transformations by using pseudopotentials.

2. The Prolongation Structure

By introducing the variables p = ux, q = vx, r = px, s = qx, the system of Eqs. (1.1)

can be represented by the set of two-forms

α1 = du ∧ dt− p dx ∧ dt ,

α2 = dp ∧ dt− r dx ∧ dt ,

α3 = dv ∧ dt− q dx ∧ dt ,

α4 = dq ∧ dt− s dx ∧ dt ,

α5 = du ∧ dx− dr ∧ dt+ 6(up+ q) dx ∧ dt ,

α6 = dv ∧ dx+ 2ds ∧ dt− 6uq dx ∧ dt ,

(2.1)

which constitutes a closed ideal I, such that dI ⊂ I.

We extend the ideal I by adding to it the system of one-forms

wA = dyA + FA dx+GA dt , A = 1, . . . , N , (2.2)

where FA and GA are functions of (u, v, p, q, r, s, yA), which are assumed in the

form FA = FAB y
B, GA = GABy

B. The extended ideal must be closed under exterior
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differentiations. This requirement gives the set of partial differential equations for

FA and GA. Dropping the indices for simplicity, we have

Fp = Fq = Fr = Fs = 0 , Gs = 2Fv , Gr = −Fu ,

pGu + qGv + rGp + sGq − 6(up+ q)Fu + 6uqFv − [F,G] = 0 ,
(2.3)

where

[F,G] = FB
∂G

∂yB
−GB

∂F

∂yB
. (2.4)

Next, we integrate Eq. (2.3). In reaching the results we equate the coefficients of

quadratic terms in F to zero, since these coefficients are in the centre of prolongation

algebra.4 The final result is

F = X1 +X2u+X3v ,

G = X0 + (−r + 3u2 + 6v)X2 + 2(s− 3uv)X3 − pX4 − uX5

−
u2

2
X6 + 2qX7 + 2vX8 + v2X9 + 2uvX10 ,

(2.5)

where X0, X1, X2, X3 are constants of integration, depending on yA only. The

remaining elements are

X4 = [X1,X2] , X5 = [X1,X4] ,

X6 = [X2,X4] , X7 = [X1,X3] ,

X8 = [X1,X7] , X9 = [X3,X7] , X10 = [X2,X7] .

(2.6)

The integrability conditions impose following restrictions on Xi (i = 1, . . . , 10),

[X2,X3] = 0 , [X2,X6] = 0 , [X3,X9] = 0 , [X1,X0] = 0 ,

[X3,X4] = 6X3 − 2X10 , [X2,X9] + 2[X3,X10] = 0 ,

[X2,X10]−
1

4
[X3,X6] = 0 ,

[X1,X6] + 2[X2,X5]− 6X4 = 0 ,

[X1,X9] + 2[X3,X8] = 0 ,

[X1,X5]− [X2,X0] = 0 ,

2[X1,X8] + [X3,X0] + 6X4 = 0 ,

[X1,X10] + [X2,X8]−
1

2
[X3,X5]− 3X7 = 0 .

(2.7)
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Using the Jacobi identities we obtain further relations:

[X1,X9] = [X3,X8] = 0 ,

[X2,X9] = [X3,X10] = 0 ,

[X2,X10] = [X3,X6] = 0 ,

[X2,X7] = [X3,X4] ,

[X1,X10]− [X4,X7]− [X2,X8] = 0 ,

[X1,X6] = [X2,X5] = 2X4 ,

[X4,X6] = −2X6 ,

[X3,X5] + [X7,X4] + 2[X1,X10] = 6X7 .

(2.8)

In order to find the Lie algebra generated by F and matrix representations of the

generators {Xi}
10
0 , we follow the strategy of Dodd–Fordy.4 It can be summarized

as follows:

(1) Locate elements of the center of the algebra. Assuming the algebra to be

(semi-)simple, equate these elements with zero.

(2) Locate a nilpotent and semi-simple element.

(3) Embed these elements in a simple Lie algebra g.

(4) Express the remaining generators of the prolongation algebra as linear combina-

tions of a suitable basis of g.

(5) Use the fundamental representation of g to generate a linear scattering problem.

First we reduce the number of elements. By using Eqs. (2.6)–(2.8), we get

X9 = 0 , X6 = 2X2 , X10 = 2X3 . (2.9)

Next, we locate nilpotent and neutral elements. Equations (2.6) and (2.9) give that

X2 is nilpotent and X4 is neutral element. Let us note that the system of equations

in (1.1) has the following scale symmetry:

x→ λ−1x , t→ λ−3t , u→ λ2u , v → λ4v , (2.10)

which implies that the elements Xi must satisfy

X0 → λ3X0 , X1 → λX1 , X2 → λ−1X2 , X3 → λ−3X3 ,

X4 → X4 , X5 → λX5 , X7 → λ−2X7 , X8 → λ−1X8 .
(2.11)

By using the basis elements, we try to embed the prolongation algebra into sl(n+

1, c). Starting from the cases n = 1, 2, we found that sl(2, c) and sl(3, c) cannot be

the whole algebra. The simplest nontrivial closure is in terms of sl(4, c). Without
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giving the details here we present the results:

X1 =













0 1 0 0

0 0 2 0

0 0 0 1
λ4

2
0 0 0













, X2 =









0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0









,

X3 =













0 0 0 0

0 0 0 0

0 0 0 0

−
1

2
0 0 0













, X4 =









1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1









,

X5 =









0 −2 0 0

0 0 4 0

0 0 0 −2

λ4 0 0 0









, X7 =















0 0 0 0

0 0 0 0

−
1

2
0 0 0

0
1

2
0 0















,

X8 =









0 0 0 0

−1 0 0 0

0 1 0 0

0 0 −1 0









, X0 =









0 0 0 −8

−4λ4 0 0 0

0 −2λ4 0 0

0 0 −4λ4 0









.

(2.12)

These generators satisfy the following commutation relations:

[X2,X4] = 2X2 , [X2,X3] = 0 , [X3,X4] = 2X3 ,

[X1,X2] = X4 , [X1,X3] = X7 , [X4,X7] = 0 ,

[X3,X7] = 0 , [X1,X7] = X8 , [X3,X8] = 0 ,

[X2,X7] = 2X3 , [X1,X4] = X5 , [X2,X5] = 2X4 ,

[X3,X5] = 2X7 , [X2,X8] = 2X7 , [X0,X1] = 0 ,

[X2,X0] = [X1,X5] , [X3,X0] = −6X4 − 2[X1,X8] .

(2.13)

By substituting the matrix representations of the generators into Eq. (2.5) we form

the matrices F and G. Using equations yx = −Fy, yt = −Gy, the linear scattering

problem can be obtained as









y1

y2

y3

y4









x

=













0 −u 0 −
λ4

2
+
v

2
−1 0 0 0

0 −2 0 −u

0 0 −1 0





















y1

y2

y3

y4









, (2.14)
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y1

y2

y3

y4









t

=









p 4λ4−4v+r−2u2 q λ4u+s−uv

−2u −p 2λ4−2v −q

0 4u p 4λ4−4v+r−2u2

8 0 −2u −p

















y1

y2

y3

y4









(2.15)

which is equivalent to the scalar Lax equation

Lψ = (∂4 − 2u∂2 − 2ux∂ − uxx + u2 + v)ψ = λ4ψ , (2.16)

where ψ = y4 and λ = constant. The corresponding time evolution of ψ is

ψt = (−4∂3 + 6u∂ + 3ux)ψ . (2.17)

3. Bäcklund Transformations

Within the prolongation scheme, Bäcklund transformations can be derived by

assuming the new solution variables as functions of old ones and the ratios of

pseudopotentials.5 For this purpose, let us define new variables

α =
y1

y4
, β =

y2

y4
, γ =

y3

y4
. (3.1)

By using Eqs. (2.14) and (2.15) we can find the equations satisfied by α, β and γ,

αx = αγ − uβ +
1

2
(v − λ4) ,

βx = −α+ βγ ,

γx = γ2 − 2β − u ,

αt = −8α2 + 2(p+ 2uγ)α+ (4λ4 − 4v + r − 2u2)β

+ qγ + (λ4u+ s− uv) ,

βt = −2uα+ 2(uγ − 4α)β + 2(λ4 − v)γ − q ,

γt = 2uγ2 + 2(p− 4α)γ + 4uβ + (4λ4 − 4v + r − 2u2) .

(3.2)

The compatibility conditions αxt = αtx and γxt = γtx hold if u and v satisfy

Eq. (1.1), while βxt = βtx holds automatically. One can easily check that the

function β satisfies the following equation:

βt − 2βxxx + 6(u+ 2γx)βx = 0 . (3.3)

This means that

ũ = u+ 2γx ,

ṽ = c1β + c2
(3.4)

are the new solutions of Eqs. (1.1) if

(4β2 + c1β)x = 0 , (3.5)
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where c1 and c2 are constants. We note that the same results for ũ and ṽ were

obtained when we followed the step (3) of Ref. 5. By seting y4 = ψ and using

Eqs. (2.14), (2.15) and (3.1) we obtain

ũ = u− 2
ψxx

ψ
+ 2

ψ2x
ψ2

,

ṽ = c1

(

−
u

2
+
ψxx

ψ

)

+ c2 .

(3.6)

Here, u is a known solution of Eqs. (1.1) and ψ is the solution of Eqs. (2.16) and

(2.17) satisfying the condition
{

1

2ψ2
[ψxx − uψ][2(ψxx − uψ) + c1ψ]

}

x

= 0 , (3.7)

which is equivalent to (3.5).

Next, we consider the simple case u = v = 0 as the known solution of (1.1) and

find a new solution. With this choice, we find that

ψ = d1e
−λ(4λ2t−x) + d2e

λ(4λ2t−x) + d3e
iλ(4λ2t+x) + d4e

−iλ(4λ2t+x) (3.8)

is a solution of Eqs. (2.16) and (2.17) where d1, d2, d3 and d4 are constants. Sub-

stituting (3.8) into condition (3.7) we obtain two sets of solutions for ψ whereas

{d1 = d2 = 0, c1 = 4λ2} and {d3 = d4 = 0, c1 = −4λ2}.

The respective solutions for ũ are

ũ1 =
8d3d4λ

2e2iλ(4λ
2t+x)

[d4 + d3e2iλ(4λ
2t+x)]2

,

ũ2 =
−8d1d2λ

2e2λ(4λ
2t−x)

[d1 + d2e2λ(4λ
2t−x)]2

.

(3.9)

where in both cases ṽ = c2−2λ4 = constant. Thus, starting from trivial background,

we obtained the one soliton solution of KdV equation with ṽ = constant.

In order to find the more general Bäcklund transformations for system (1.1), we

assume that new solutions Ũ and Ṽ are functions of old variables u, v, p, q, r, s

and α, β, γ which are the ratios of prolongation variables satisfying Eq. (3.2). After

some straightforward but long calculations we obtain the following results:

Ũ =
Ω

2
−∆−

2

γ
(α+ 2βγ) ,

Ṽ = Θxx −
∆

γ
Θx −Θ2 ,

(3.10)

where

Ω = −
1

γ2
(pγ + u2 + 4βu+ 4β2 − 4αγ) ,

∆ = 2β − 2γ2 + u ,

Θ =
1

4γ2
[−u2 + 2(γ2 − 2β)u− 4(αγ + β2)] ,

(3.11)
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and Θ must satisfy the condition

Θt = 2Θxxx + 3ΩΘx . (3.12)

Thus, if any solutions u and v to the Drinfeld–Sokolov system of equations are

known and if α, β, γ are solutions of (3.2) satisfying the condition (3.12), then Ũ

and Ṽ are the new solutions of (1.1).

If we take the trivial seed solutions u = v = 0, we get

Ũ = −
2β2

γ2
+ 2(γ2 − 2β) ,

Ṽ = −
1

γ4
(17β4 + 8β3γ2 − 10β2αγ + α2γ2) +

(

λ4

2
+
c0

18

)

,

(3.13)

with the condition

β[−56β4 + 48β2γα− 3βγ2λ4 − 8γ2α2 + γ4λ4] = 0 . (3.14)

By setting y4 = ψ, one can write these expressions in terms of the solutions of Lax

equations (2.16), (2.17) and see that our results are more general than the given by

Tian and Gao.11

As an example, we consider the simple case, u = v = 0 as the known solutions

of (1.1) and we obtain the following two sets of explicit solutions:

Ũ =
2c21

(c1x+ c2)2
, Ṽ =

c0

18
(3.15)

and

Ũ =
30(c1+x2){4x[5c1[2(24t−x3)−3c1x]−(c2+3x5)]+15(x2+c1)

3]}

{5c1[2(24t−x3)−3c1x]−(c2+3x5)}2
,

Ṽ = −
120x[c2 + 3x5 + 15c21x− 10c1(24t− x3]3

{5c1[2(24t− x3)− 3c1x]− (c2 + 3x5)}4
,

(3.16)

where c0, c1, c2 are constants.

As we observed that there are no solitary wave solutions belonging to the class

(3.13). Very recently, all the special solutions of (1.1) are obtained by Karasu and

Sakovich.12

4. Conclusion

In this work we have rederived the linear scattering problem for Drinfeld–Sokolov

system of equations by using the prolongation algorithm. We found the auto-

Bäcklund transformations and some exact solutions of these equations. The sys-

tem can be integrated by the method of inverse scattering problem associated with

the fourth order Lax operator L, which was developed by Iwasaki.13 It is known

that the most general Bäcklund transformation would be the one which utilizes

the infinite dimensional algebra and not all of finite algebras give rise to Bäcklund

transformations. Without searching if the incomplete algebra given in (2.7) is finite
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or infinite dimensional we used a finite dimensional representation of prolongation

algebra and derived nontrivial Bäcklund transformations. Thus, the methods given

in Refs. 4 and 5 are quite useful from the practical point of view, for the systems

of nonlinear partial differential equations. Finally, we note that a close connec-

tion between some stationary flows associated with fourth-order Lax operators and

generalisations of some integrable Hamiltonian systems with quartic potentials is

known.14 Equations (2.16) and (2.17) can be considered in this context.
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