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Abstract. The characteristic initial-value problem of the gravitational and N-Maxwell plane 
wave collision is solved exactly. 

One of the basic problems in gravitational theory is to find the exact solution of 
colliding electromagnetic waves. This problem was first formulated by Bell and Szekeres 
(1974) who gave an exact solution representing the collision of impulsive gravitational 
waves coupled with electromagnetic shock waves in a conformally flat spacetime. In 
a recent work Chandrasekhar and Xanthopoulos (1985, 1987) have obtained a new 
exact solution which is, in some sense, a generalisation of the Bell-Szekeres metric. 
In obtaining the solution, they extended the relationship between the solutions describ- 
ing stationary axially symmetric spacetimes and solutions describing colliding plane 
waves, which admit two spacelike Killing vectors, to the Einstein-Maxwell equations. 
On the other hand it was shown by Gurses and Xanthopoulos (1982) that there exists 
an analogy between static axially symmetric self-dual SU(3) Yang-Mills and axially 
symmetric stationary Einstein-Maxwell field equations. This analogy is further exten- 
ded by Gurses (1984). It was shown that a restricted class of static axially symmetric 
self-dual SU( n + 1) Yang-Mills field equations are equivalent to the stationary axially 
symmetric Einstein-( n - 1)-Maxwell field equations. 

In this work we consider the collision of N-Abelian gauge plane waves by adopting 
the Gurses equations for the spacetimes admitting two spacelike Killing vector fields. 

In order to discuss the collision problem we consider the spacetime where U and 
U are null coordinates and x and y are spacelike coordinates. We split the spacetime 
into four distinct regions labelled by I (U < 0, U < 0), I1 (U > 0, v < 0), I11 (U < 0, v > 0) 
and IV ( u > O ,  u > O ) .  

In region I, the spacetime is flat Minkowskian space. 
In region 11, the spacetime metric is given by 

du du-g,(u) dx '  dx' i = 1,2. (1) ds2 = 2 e - M ( u )  

The Abelian gauge plane wave is defined by the Newman-Penrose ( N P )  spinors 4 f ( u )  
and 4: = 4: = 0, where A = 1, .  . . , K. 

Similarly in region 111, the metric is 

and the wave is defined by the N P  spinors +,"'(U) and 4$'=4:'=0, where A'= 
K + 1, . . . , N. 
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In the interaction region IV, the spacetime metric is given by Bell-Szekeres 

d s 2 = 2 e - M  du dv-e-"(eVcosh W d ~ ~ + e - ~ c o s h  Wdy2-2sinh W d x d y )  (3) 

where the metric functions M, U, V and W depend on the coordinates U and v only 
and the NP spinors satisfy 

m u ,  v )  f 0 4 3 %  0) f 0 + f = O  ( a  = 1,. . . , N). 

We shall assume that the potential 1-form A" has two components 

A"=A:dx+A,"dy a = l ,  . . . ,  N (4) 

where A: and A," are functions of U and U. The Einstein-N-Maxwell field equations 
are 

U,, - u,u, = 0 

2U,,- U ~ + 2 U , M , =  W',+ V', Cosh2 W-4k4;64 

2U,,- U:+2U,M,= W:+ Vtcosh2 W-4k4,"6," 

2M,,+ U,U,- W,W,= V,V, Cosh2 W 

2W,,- W,U,- W,Uu=2V,V, sinh Wcosh W+2ik(4;&,"-$;4,") 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
2k 

Vu, - V,U, - V,U, = -2( Vu W, + V, W,) tanh W -- cosh W (4S,"+&-2a43 

where 

2 au 
1 4; = JZ exp[i( U - V)] 

2 du 
W aA" 

-i  evcosh--+sinh-- ( 2 au 

2 av 

The non-trivial Maxwell equations can be written in terms of 4; and 4: as 

4;,, = -$(Vu cosh W + i  W,)4," +i( U, +iV, sinh W)+; 

4,",,=-i( V, cosh W-iW,,)~i,"+~(U,-iV, sinh W ) + ; .  

(13) 

(14) 

For N = 2, we have 4:( U )  # 0 in region I1 and +:(U) # 0 in region I11 which constitute 
the initial data to determine U, V, W, M, 4; and 4;  in region IV. Rewriting Maxwell 
equations (13) and (14) for a = 1 and a = 2, and using the initial data we find 

w=o V = constant 4:=e""j(u) 4; = e "'*g( v ) .  (15) 

The solution of equation ( 5 )  is given as 

e-"= a ( u ) + b ( v ) .  
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Substituting (15) and (16) into equations (6) and (7) we have 

2a,,,, + auyu = 4kff 

2b"V + b,,Yv = 4kgg 

where y =  U+2M. 
In region I1 we have 

which determines f ( u )  in terms of a ( u ) .  
In region I11 we have 

M=O e - U = i + b ( v )  and 2b -v- - 4kgg (20) 
b2 

(;+ b) 

which determines g(v)  in terms of b(v). Here we have chosen a ( 0 )  =;, b(0)  =$  for 
convenience. 

Using f ( u )  and g ( v )  in the equations (17) and (18) we find the solution for the 
metric function M, 

a + b  
(4-t a)(;+ b) '  

M=;log 

Thus the line element becomes 

( (;:a)(f+b))'l2 du d v - ( a +  b)(dx2+dy2).  
ds2 = 2 

a + b )  

The components of potential 1-forms A' and A2 can be calculated from equations (1 1) 
and (12), 

l a  
f i  a u  

J5 av 

f(u)=--(A:-iAb) 

g( v )  = - - (A: + iA:) 
l a  

which can be integrated for any given f ( u )  and g(u)  (or a ( u )  and b(v)). 
This result can be generalised for arbitrary N. In this case we have 

4; = e U )  4;' = e U/2gA'(v) (25) 

w h e r e A = l ,  . . . ,  K , A ' = K + l ,  . . . ,  N. 
Equations (17) and (18) can be written as 

2 a,,,, + a,, yu = 4 kf "f" 
A' -A' 2bo, + btiyti = 4kg g 

and equations (23) and (24) become 

i a  
Jz au 

f A( U )  = - - ( A t  - iAc) 

gA'(v) = -- - (At'+iA,t'). 
l a  
Jz av 
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The metric functions remain the same as (22) for N = 2. As a summary we have the 
following. 

Data. 
I Flat spacetime 
I1 ( u = O ,  or b = i ) ,  ~ ; ( u ) = ( ; + u ) -  1 / 2  f A (U), A = l ,  . . . ,  K 

d s 2 =  2 du dv - (;+ a) (dx2+dy2)  

111 ( u = O o r a = % ) ,  4 : ' ( u ) = ( i + b ) - 1 ' 2 g A ' ( u ) , A ' = K + 1 , . . . , N  

d s 2 = 2  du du -(;+ b)(dx2+dy2).  
Solution. 

IV ( U > O ,  u > O )  

(30)  

(31) 

1/2  A 
&U, U) = ( a + b ) -  f (U) 

4,"'b, 0) = ( a t - b )  g (0) 
1 / 2  A' 

( ( ; + a ) ( % +  b)) l i2  
ds2 = 2 du du - ( a  + b) ( dX2 + dy2) 

a + b  

where by an appropriate choice f A ( 0 )  = 0 and g A ' ( 0 )  = 0. Hence for a given datum 
[ a ( u ) ,  b(u)] we have an exact solution (30, 31, 32). 

Choosing the null tetrad basis 

du = e -M/2  dv 1 = e - M / 2  

(-cosh W/2 + i sinh W/2) dx  = 2-1/2 ( V - U ) / 2  [e (33) 

+ e-(U+V)'2(sinh W/2 - i cosh W/2) dy] 

the non-vanishing NP spin coefficients are found to be 

V U  MU (34) = e"/2 p = z e  I M/2 U, = -I eM12MU = -$ eM/= 

where U and M are given in equations (16) and (21). The non-vanishing Ricci spinors 
and Weyl spinors are found to be 

-kgA'gA' 

Qoo = [ ( ;+a)(%+ b ) ( a +  b)]'" 

@ I ,  = [ ( ;+a)(%+ b ) ( a +  b)]'I2 
- kf "f" 

1 a&, ICI 2 -  --- 4 ( ~ + b ) [ ( ~ + a ) ( ; + b ) ( a + b ) ] ' / ~ '  

(35) 

(37) 

We conclude that the solution given in equation (22) for region IV has type-D character. 
The spacetimes describing the initial plane waves are conformally flat. The metric 
becomes singular on a(  U )  + b( v )  = 0 which is an essential spacetime singularity. Choos- 
ing a ( u )  =%-sin2 a,u, b(v) =;-sin2 b l v  the metric (22) reduces to the one given by 
Griffiths (1976) which represents a collision between an electromagnetic wave and a 
neutrino field. 
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