
ABOUT GEOMETRIZATION OF THE DYNAMICS*)

D. BALEANU**)
Bogoliubov Laboratory of Theoretical Physics,

Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
and

Middle East Technical University, Physics Department, 06531 Ankara, Turkey

A . ( K A L K A N L I ) KARASU
Middle East Technical University, Physics Department, 06531 Aniara, Turkey

N. M A K H A L D I A N I

Laboratory of Computing Techniques and Automation,
Joint Institute for Nuclear Research, Dubna, Moscow region, Russia

Received 3 August 1999

The connection between Killing tensors and Lax operators are presented. The Toda
lattice case and the Rindler system are analyzed in details.

*) Presented at the 8th Colloquium "Quantum groups and integrable systems", Prague, 17-19
June 1999.

**) Permanent address: Institute of Space Sciences, P.O.Box MG-23, R 76900 Magurele-
Bucharest, Romania

Czechoslovak Journal of Physics, Vol. 50 (2000), No. 1 17

In [4] it was shown that for a theory with a dual Poisson bracket structure, the
sufficient condition for integrability is the vanishing of the Nijenhuis tensor. Another
method to construct integrals of motion, for the finite systems, is to use the Jacobi
geometry and to analyze the existence of Killing tensor in the case of geodesic
motion. The geodesic equations are

We can construct the conserved quantities

1 Introduction

It is well known that, many of the classical dynamical theories are completely
integrable [1-2]. These are both finite as well as infinite dimensional theories which
describe physical systems of importance. For discrete finite systems, it is known
that the zero Nijenhuis tensor [3] condition can be used to construct conserved
quantities in involution [4], Let us note that for a given (1,1) tensor such as Svu we
can define the Nijenhuis torsion tensor as [3]
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If each integral of the equation (3) satisfies the condition

the equations (3) are said to admit a first integral of the m-th order. Without loss
of generality we can consider the tensor kri...rn as asymmetric tensor and it is easy
to show that it satisfies the following equation

where the parenthesis denotes the full symmetrization [5]. The equation (5) is the
definition of the Killing tensor of order m. Killing tensors are indispensable tools
in the guest for exact solutions in many branches of general relativity as well as
classical mechanics [6-8]. Killing tensors are important for solving the equations
of motion in particular space-times. The notable example here is the Kerr metric
which admits a second rank Killing tensor [7]. In order to describe the first integral
of motion of order m in the case of geodesic motion we can analyze the existence
of Killing-Yano tensors [6]. A Killing-Yano tensor of order m is an antisymmetric
tensor fu l . . .u r which satisfies the following equations

If a Killing-Yano tensor exists then using (6) we can construct immediately a Killing
tensor, of order two [7]. It was a big success of Gibbons et all. [8] to have been able
to show that the Killing-Yano tensor, which had long been known as a rather
mysterious structure, can be understood as an object generating "a non-generic"
supersymmetry, i.e a supersymmetry appearing only in specific space-times [8,9],
Another method to obtaining a Killing tensor on a given manifold guv is to investi-
gate the existence of the Lax tensors Luv and Auv [10]. In some specific cases, the
Lax tensors Luvx are Killing-Yano tensors of order three [10].

The main aim of this paper is to analyze the connection between Killing tensors
and Lax tensors. We investigate the Lax tensors for the three dimensional open
Toda's lattice and the Rindler system.

2 Lax pair tensors

Let us consider a Riemannian or pseudo-Riemannian geometry with the metric

The geodesic, equation can be represented by the Hamiltonian

together with the natural Poisson bracket on the cotangent bundle. The geodesic
system has the form
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The complete integrability of this system can be shown with the help of a pair of
matrices L and A with entries defined on the phase space and satisfying the Lax
pair equation [11]

It follows from (10) that the quantities Ik, = (I/k) Tr Lk are all constants of motion.
If in addition they commute with each other {Ik,Ij} = 0 then it is possible to
integrate the system completely at least in principle. We know that the Lax pair
equation is invariant under a transformation of the form

We see that L transforms as a tensor while A transforms as a connection. Typically,
the Lax matrices are linear in the momenta and in the geometric setting they may
also be assumed to be homogeneous. This motivates the introduction of two third
rank geometrical objects Lab' and Aab' such that the Lax matrices can be written
as

We will refer to Lab1 and Aab^ as the Lax tensor and the Lax connection, respectively.
Defining

where F = (Fp} — (F^p^) is the Levi-Civita connection with respect to gap, it
then follows that the Lax pair equation takes the covariant form

where L^7 and B^ are tensorial objects. Let us suppose that a manifold g^ admits
Lax pair tensors LaB7,ArBa in such a way that

The symmetric part of LaBr is a Killing tensor of rank three because L(aBr;s ) = 0.
Here the parentheses represent the full symmetrization. Any Killing tensor Lays(
with covariant derivative zero is a Lax tensor of order three because (15) is satis-
fies. LaBr generates an infinite number of Killing tensors on a given manifold. Of
course not all Killing tensors generated by Lax tensors are independent and some
of them are trivial Killing tensors. Another important observation is that in the
case when we have gaB = Luva LuvB we can identify the invariant I2 with the geodesic
Hamiltonian. Aabr plays an important role because it can be related to the torsion
of the manifold.

3 Examples

A. The Hamiltonian corresponding to the three-particle open Toda lattice has
the form [12]

Czech. J. Phys. 50 (2000) 19



D. Baleaau et al.

The standard symmetric Lax representation is

where

The Hamiltonian (16) admits the linear invariant I1 = Tr L = p1 + p2 + p3. The
Lax representation also gives rise to the two invariants I2 = 1/2 TrL2 = H and
/3 = 1TrL3. Because L and A from (17) are not yet linear and homogeneous in
the momenta we will perform a canonical transformation

The resulting Lax pair matrices are [10]

where

The Hamiltonian is now purely kinetic

Using (22) we identify the metric

where

The non-zero Levi-Civita connection coefficients, Fabr of this metric are

After a similarity transformation we found that final forms of the Lax matrices are
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Note that the upper triangular part of L and A coincide. This property is peculiar
to open Toda lattice. The corresponding connection matrix F is given by

We observe that the off-diagonal part of the matrix T is antisymmetric like that
of A and furthermore that their off-diagonal components are related by the simple
relation FaBr = 2(LaB)2 for a -B. Using the relation A = F + B, we can find after

some calculations that BaBy = —Barp [10].

B. The Rindler system [13] is conventionally denoted by T and r:

with coordinates curves (timelike hyperbolas and spacelike straight lines) given by

the metric

and the associated Killing tensor

Here c is a constant. The non-zero Christoffel symbols are F211 = r, F112 = 1/r.
We have four independent symmetric components of LaBr and eight independent
equations:

Here semicolon denotes the covariant derivative. We found that a solution of (33)
has the following form:

where C1,C2 are constants.
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4 Conclusions

In this paper the connection between Killing tensors and Lax tensors was in-
vestigated. We found that a covariant constant third rank Killing tensor is a Lax
tensor. The solution of Lax tensors for three dimensional open Toda lattice was
presented. Solving (33) we found, for the Rindler system, a nontrivial solution for
Lax tensors. It would be an interesting problem to analyze the solution of the Lax
tensors equation in the presence of torsion and it will be given in a separate paper.
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