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The ð2þ 1Þ-dimensional spherical Kadomtsev–Petviashvili (SKP) equation of J.-K. Xue [Phys. Lett. A
314 (2003) 479] fails the Painlevé test for integrability at the highest resonance, where a nontrivial
compatibility condition for recursion relations appears. This compatibility condition, however, is
sufficiently weak and thus allows the SKP equation to possess an integrable ð1þ 1Þ-dimensional
reduction, which is found by the method of truncated singular expansion.
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Recently, Xue1) deduced a spherical Kadomtsev–Pet-
viashvili (SKP) equation for nonlinear dust acoustic waves
in unmagnetized dusty plasmas with the consideration of the
effects of spherical geometry and transverse perturbation.
This SKP equation can be expressed in the form

uxxxx � 12uuxx � 12u2x þ uxt þ
1

t2
uyy þ

1

t
ux þ

1

yt2
uy ¼ 0

ð1Þ
by rescaling its dependent and independent variables.

Xue1Þ noted that the SKP equation [eq. (1)] permits two
exact reductions to ð1þ 1Þ-dimensional equations: first, the
reduction u ¼ uðx; tÞ to the spherical Korteweg–de Vries
(SKdV) equation ut þ uxxx � 12uux þ t�1u ¼ 0, which is
believed to be a nonintegrable equation,2) and second, the
reduction u ¼ uðz; tÞ with

z ¼ x� 1
4
y2t ð2Þ

to the Korteweg–de Vries (KdV) equation ut þ uzzz �
12uuz ¼ 0. Having used this reduction to the integrable
KdV equation, Xue1) obtained an exact solitary wave
solution of the SKP equation.

Owing to the reduction to the KdV equation, the SKP
equation [eq. (1)] automatically possesses N-soliton solu-
tions, for any N, derivable from those of the KdV equation
through the variable z given by eq. (2). Of course, the
existence of such ð1þ 1Þ-dimensional solitons does not
imply that the ð2þ 1Þ-dimensional SKP equation is integra-
ble. Moreover, the existence of the reduction to the SKdV
equation suggests that the SKP equation is nonintegrable.

In the present Letter, we study the integrability of the SKP
equation [eq. (1)] directly, not using its reductions. We show
that the SKP equation does not pass the Painlevé test for
integrability due to the nondominant logarithmic branching
of its general solution. The singularity analysis indicates,
however, that many special solutions of the SKP equation
are free from this logarithmic branching. In order to select
those single-valued special solutions, we use the method of
truncated singular expansion, and in this way surprisingly
obtain not a class of explicit special solutions but the exact
reduction of the SKP equation to the KdV equation.

First, let us show that the SKP equation [eq. (1)] does not
pass the Painlevé test for integrability. We follow the so-
called Weiss–Kruskal algorithm of singularity analysis.3,4)

Note that the Painlevé analysis of wide classes of variable-
coefficient Kadomtsev–Petviashvili equations was carried
out in refs. 5 and 6, however the form of eq. (1) differs from
the form of equations studied there.

Starting the singularity analysis, we substitute u ¼
u0ðy; tÞ�� þ � � � þ urðy; tÞ�rþ� þ � � � with @x�ðx; y; tÞ ¼ 1 into
the SKP equation [eq. (1)], and find that the singular
behavior of a solution u corresponds to � ¼ �2 with
u0 ¼ 1, the positions r of resonances being r ¼ �1; 4; 5; 6.
This is the generic branch representing the general solution.

Then, assuming that the singular behavior of u near a
hypersurface �ðx; y; tÞ ¼ 0 with �x ¼ 1 is determined by the
expansion

u ¼
X1
n¼0

unðy; tÞ�n�2; ð3Þ

we obtain from eq. (1) the following recursion relation for
the coefficients un:

ðn� 2Þðn� 3Þðn� 4Þðn� 5Þun

þ ðn� 4Þðn� 5Þ
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n ¼ 0; 1; 2; . . . ; ð4Þ

where u�4 ¼ u�3 ¼ u�2 ¼ u�1 ¼ 0 formally.
At n ¼ 0; 1; 2; 3, the recursion relation [eq. (4)] gives us,

respectively,

u0 ¼ 1; ð5Þ
u1 ¼ 0; ð6Þ

u2 ¼
1

12
�t þ

1

t2
�2y

� �
; ð7Þ

u3 ¼ �
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� �
: ð8Þ
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At the resonances n ¼ 4 and n ¼ 5, where the coefficients
u4ðy; tÞ and u5ðy; tÞ are not determined, the recursion relation
[eq. (4)] turns out to be compatible. However, at the highest
resonance, n ¼ 6, where the coefficient u6ðy; tÞ is not
determined, we obtain from eq. (4) the following nontrivial
compatibility condition:

�y þ 1
2
yt

� �
�yy þ 1

2
t

� �
¼ 0; ð9Þ

which indicates that we should modify the expansion
[eq. (3)] by introducing additional logarithmic terms, start-
ing from the term that is proportional to �4 log�.

Consequently, the SKP equation [eq. (1)] does not pass
the Painlevé test for integrability due to the nondominant
logarithmic branching of its solutions. The observed analytic
properties of the SKP equation suggest that it cannot possess
any good Lax pair.

There is an interesting conjecture, formulated by Weiss,7)

that the differential constraints, which arise in the singularity
analysis of nonintegrable equations, are always integrable
themselves (see ref. 8 for further discussion on this
conjecture). In the present case of the SKP equation
[eq. (1)], we find that, in accordance with the Weiss
conjecture, the compatibility condition [eq. (9)] with �x ¼
1 can be solved exactly, the result being

� ¼ x� 1
4
y2t þ yf ðtÞ þ gðtÞ; ð10Þ

for any f ðtÞ and gðtÞ.
We can see from eq. (10) that the compatibility condition

[eq. (9)] is not very restrictive. The class of single-valued
solutions of the SKP equation [eq. (1)], which are free from
the nondominant logarithmic branching, is very wide: it is
determined by the Laurent-type expansion [eq. (3)] contain-
ing three arbitrary functions of two variables and two
arbitrary functions of one variable, namely, u4ðy; tÞ, u5ðy; tÞ,
u6ðy; tÞ, f ðtÞ and gðtÞ (compare with the general solution
which contains four arbitrary functions of two variables).
For this reason, one can hope to find many special single-
valued solutions of the SKP equation [eq. (1)] in a closed
form, whereas the existing techniques provide no closed
expressions for solutions possessing nondominant logarith-
mic singularities.

Now, let us apply the method of truncated singular
expansion of Weiss9) to the SKP equation [eq. (1)]. This
method, which is able to produce Bäcklund transformations
and Lax pairs for integrable nonlinear systems, is also very
useful in nonintegrable cases for finding explicit special
solutions.10)

Substituting the truncated singular expansion (note that
the Kruskal’s ansatz is not used from this point on)

u ¼
u0ðx; y; tÞ
�ðx; y; tÞ2

þ
u1ðx; y; tÞ
�ðx; y; tÞ

þ u2ðx; y; tÞ ð11Þ

into the SKP equation [eq. (1)] and collecting terms with
equal degrees of �, we obtain the following:

u0 ¼ �2x ; ð12Þ
u1 ¼ ��xx; ð13Þ

u2 ¼
�xxx

3�x
�
�2xx
4�2x

þ
�2y

12t2�2x
þ

�t

12�x
; ð14Þ

�xxxx �
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þ
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�
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t2�2x
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�yy
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þ
�x
t
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yt2

¼ 0; ð15Þ

yt�x þ 2�y
� �

�2y�xx � 2�x�y�xy þ �2x�yy þ
1
2
t�3x

� �
¼ 0: ð16Þ

We see that, for any solution �ðx; y; tÞ of the overdetermined
nonlinear system [eqs. (15) and (16)], the truncated singular
expansion [eq. (11)] with the coefficients given by
eqs. (12)–(14) generates a solution uðx; y; tÞ of the SKP
equation [eq. (1)]. However, in order to use this fact, we
need to solve the system expressed by eqs. (15) and (16).

First, we solve eq. (16), which is equivalent to

�2y�xx � 2�x�y�xy þ �2x�yy þ
1
2
t�3x ¼ 0 ð17Þ

because any solution of yt�x þ 2�y ¼ 0 satisfies eq. (17).
Setting x to be the new dependent variable,

x ¼  ð�; y; tÞ; ð18Þ

we rewrite eq. (17) in the equivalent linear form

 yy ¼ 1
2
t: ð19Þ

The general solution of eq. (19) and the expression eq. (18)
give us the following implicit general solution of eq. (16):

x ¼ 1
4
y2t þ að�; tÞyþ bð�; tÞ; ð20Þ

where a and b are arbitrary functions.
Now, having solved eq. (16), we use eq. (20) and find that

eq. (15) is equivalent to

a ¼ 0; ð21Þ

b�t þ
b����

b3�
�

6b��b���

b4�
þ

6b3��

b5�
¼ 0: ð22Þ

Owing to the condition expressed by eq. (21), we determine
using eq. (20) that � is in fact a function of two variables

�ðx; y; tÞ ¼ !ðz; tÞ; ð23Þ

where z is given by eq. (2). Then the condition expressed by
eq. (22) is equivalent to

!t

!z

þ
!zzz

!z

�
3!2

zz

2!2
z

 !
z

¼ 0: ð24Þ

We have solved the overdetermined nonlinear system
expressed by eqs. (15) and (16): its general solution is
eq. (23), where z is given by eq. (2) and ! is any solution of
eq. (24). Using this, we find from eq. (11) with eqs. (12)–
(14) that the most general solution u, obtainable for the SKP
equation [eq. (1)] by the method of truncated singular
expansion, is

uðx; y; tÞ ¼ vðz; tÞ; ð25Þ

with z given by eq. (2) and any function v satisfying the
equation

vt þ vzzz � 12vvz
� �

z
¼ 0: ð26Þ

Consequently, the Weiss method,9) being applied to the SKP
equation, rediscovers the reduction of this ð2þ 1Þ-dimen-
sional nonintegrable equation to the ð1þ 1Þ-dimensional
integrable KdV equation.

In conclusion, let us summarize the obtained results. The
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discovered analytic properties of the SKP equation [eq. (1)]
suggest that this equation cannot possess any good Lax pair
but can possess many single-valued solutions. The attempt
of selecting those single-valued solutions by the method of
truncated singular expansion leads not to a class of explicit
special solutions, as one could expect, but to an exact
reduction of the studied nonintegrable equation to a lower
dimensional integrable equation (as far as we know, this is a
new phenomenon that has not been described in the
literature as yet). It is very likely, however, that the
truncated singular expansion represents not all single-valued
solutions of the SKP equation [eq. (1)]. Indeed, positions
� ¼ 0 of singularities of a generic single-valued solution are
determined using eq. (10) with arbitrary f ðtÞ and gðtÞ,
whereas the positions of singularities of eqs. (25) and (26),
obtained by the truncation method, are restricted by the
condition f ðtÞ ¼ 0. Therefore it is an interesting problem for
future study to attempt different methods for finding any
closed form solution of the SKP equation [eq. (1)] without

this restriction f ðtÞ ¼ 0 imposed on the positions of its
singularities.
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